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Abstract

This paper studies the ability of a consensus pricing service to reduce uncertainty among

dealer banks in the over-the-counter options market. The analysis is based on the struc-

tural estimation of a model of learning from prices. The estimation yields two empirical

measures of uncertainty: uncertainty about option values and strategic uncertainty about

competitors’ valuations. The main contribution of the consensus prices is to reduce strate-

gic uncertainty, especially in the most opaque segments of the options market. The results

stress the importance of pricing benchmarks for aggregating dispersed information and

creating a shared understanding of market conditions in opaque market structures.
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1 Introduction

Prices serve a dual purpose. They aggregate dispersed information about gains from trade.

At the same time, they also help market participants to coordinate their actions. Empirical

work on the informational value of prices typically focuses on the first aspect. However, the

ability of prices to reduce strategic uncertainty, that is “uncertainty concerning the actions

and beliefs (and beliefs about the beliefs) of others” adopting a definition by Morris and

Shin (2002), can be of equal importance. This is especially true in markets with strong

coordination motives. In intermediated markets, for example, intermediaries have to hold a

view about the gains from trade that can be achieved between buyers and sellers. But they

also have to form beliefs about their peers’ behavior as the prices they quote have to factor

in their ability to trade and share risks with other intermediaries, for example risk that de-

rives from holding inventory. Publicly observed prices can help to avoid costly coordination

failures by establishing reference points for trading and create a common understanding of

market conditions among market participants.1

A key challenge to assessing the importance of prices for reducing strategic uncertainty is

measurement. Strategic uncertainty is a concept that is based on market participants’ beliefs

and data on beliefs are typically not available.2 Often research uses empirical proxies to mea-

sure strategic uncertainty, such as the cross-sectional dispersion of professional forecasts of

interest rates or stock market returns. But this still requires a model that maps these proxies

into market participants’ beliefs and disciplines how beliefs react to information contained

in prices. Forecast dispersion, for example, can reflect disagreement among professional fore-

casters rather than market participants’ uncertainty about each others’ actions or beliefs.

More direct observations on market participants’ assessments of market conditions would be

preferable, ideally for markets in which strategic uncertainty is likely to play an important

1Episodes of financial market freezes provide ample evidence for coordination failure in the absence of
market prices. Lowenstein (2000) (p. 159), for example, gives a vivid account of the bond market at the
height of the LTCM crisis on August 31, 1998: “It was as if a bomb had hit; traders looked at their screens,
and the screens stared blankly back. [...] So few issues traded, you had to guess where they were.”

2However, eliciting higher-order beliefs has a long tradition in the experimental literature, especially
building on Nagel (1995). More recently, research has started to collect survey data on firm and investor
beliefs about financial prices and macroeconomic conditions, for example Coibion et al. (2021) and Giglio
et al. (2021).
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role. An obvious candidate is financial over-the-counter (OTC) markets. The OTC market

structure depends on intermediaries for trading and has limited price transparency. In many

financial OTC markets consensus pricing services have sprung up to make up for the lack

of publicly available price data. These services collect estimates of asset values from their

subscribers, typically the main intermediaries in the market, and in return provide them with

a consensus price, an aggregate price calculated from their estimates. The consensus price

should reflect the current market value of the asset. As all major intermediaries contribute to

the service, the consensus pricing setup constitutes a contained informational environment

and is an ideal setting to study the impact of prices on strategic uncertainty. It tracks the

beliefs of a well-defined group of highly-sophisticated market participants over time. At the

same time, given the opaque OTC market structure, the consensus price is likely the only

price that is jointly observed by all members of this group.

In this paper we develop a novel approach to measuring strategic uncertainty based on the

structural estimation of a model of learning from prices. We apply this framework to the

OTC derivatives market and quantify the importance of consensus price information for

reducing strategic uncertainty among market participants. The empirical analysis is based

on a new data set of price submissions that large dealer banks, highly sophisticated market

participants, make to the main consensus pricing service in OTC options market. We use a

structural estimation to obtain empirical measures of uncertainty that are based on dealer

banks’ model-implied beliefs. We prove identification of the learning model. Observing both

a panel of individual dealer banks’ price submissions and the aggregate consensus price feed-

back is crucial for identifying the structural parameters of the model. We also measure how

efficient the consensus price is in aggregating dispersed information. In the model, dealer

banks learn about a latent and time-varying option value from two types of signals: a noisy

private signal and a consensus price. The consensus price is modelled as an endogenous sig-

nal: it is the average expectation across dealers of an option’s value plus noise. Each dealer

bank is uncertain about the current value of the option and other dealers’ expectations of

this value. We use the variance of a dealer bank’s posterior beliefs about option value and

competing dealers’ average expectations to measure these two dimensions of uncertainty. To

gauge the informational value of consensus prices, we perform counterfactual experiments

on the option market’s information structure. As we model the consensus price to be an
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endogenous signal, we can counterfactually shut down the consensus pricing services while

holding the total amount of information distributed across market participants constant.

We find that dealer banks’ strategic uncertainty as well as their uncertainty about option

values varies substantially across the different segments of the OTC options market. Some

market segments overlap with exchange-based options trading for which price data is publicly

available. Here, dealer banks appear to be fairly confident both in their option valuations and

in their ability to judge competitors’ valuations. Options contracts with extreme contract

terms are exclusively OTC traded. For these contracts, we find considerable valuation and

strategic uncertainty. Our model implies that dealer-banks’ beliefs are normal distributions.

This allows us to quantify their uncertainty in terms of posterior intervals. We find that a

dealer bank’s 95 percent posterior interval around its current best estimate of competitors’

option valuations is as wide as 6.5 volatility points for option contracts with the highest

strategic uncertainty. This corresponds to roughly half the contract value. Counterfactually

eliminating the consensus price feedback for dealer banks increases this strategic uncertainty

by up to 37 percent. We also infer from this counterfactual experiment that dealer banks

do not rely heavily on the consensus price feedback to reduce their uncertainty about option

values. The reduction in valuation uncertainty is at most 4 percent in the most opaque

market segment. These results imply that the consensus price information is most impor-

tant for reducing strategic uncertainty. This impact is strongest for option contracts with

extreme contract terms. This reflects the scarcity of publicly available price information in

these market segments. It also stresses the importance of publicly observed market data,

such as financial benchmarks, for establishing a shared understanding of market conditions

in markets with limited price transparency. Finally, to judge the informational efficiency of

the consensus price, we compare it to a counterfactual price that perfectly aggregates the

private information dispersed across dealer banks. We find that in market segments that

overlap with exchange-based trading, the consensus price is almost fully efficient in aggregat-

ing information, both information about option values and information about competitors’

valuations. However, in the most opaque market segments, a fully efficient information ag-

gregation mechanism could reduce strategic uncertainty by up to an additional 60% and

valuation uncertainty by up to 33%.

3



The estimation framework developed in this paper makes a methodological contribution

by showing how to structurally identify the informativeness and informational efficiency of

prices. The modern theoretical framework for these questions dates back to the early 1980s,

with seminal contributions by Grossman and Stiglitz (1980), Hellwig (1980) and Diamond

and Verrecchia (1981).3 Vives (1997) highlights the importance of the mix between pub-

lic and private information for the speed of information aggregation. However, as pointed

out by Townsend (1983), determining the informational content of the price process in a

dynamic equilibrium context poses significant technical challenges. Most structural empiri-

cal analyses of price formation avoid these problems by assuming that asset values become

common knowledge after a finite number of periods, e.g., following Easley et al. (1996)’s

information structure. But this assumption prevents long-lasting belief heterogeneity. A

time-varying latent fundamental value paired with privately informed market participants is

a key source of belief heterogeneity and, hence, strategic uncertainty in our model. To solve

the dynamic signal extraction problem and structurally estimate the model, we adopt an

iterative algorithm previously used in Nimark (2014) and Barillas and Nimark (2017). We

show that observing belief updating dynamics at the level of the individual institution is key

for identifying the structural parameters of the model. Modelling the consensus price as an

endogenous public signal allows us to conduct counterfactual experiments on the market’s

information structure to evaluate the strength of informational externalities caused by public

information (Amador and Weill (2012)).

There is a large literature that uses the cross-sectional dispersion among professional fore-

casters to study informational frictions (Coibion and Gorodnichenko (2012), Andrade et al.

(2016)). A major aim of this literature is to understand the expectation formation process.

The insights gained are then used to discriminate between alternative models, extrapolate to

a wider group of market participants than just professional forecasters, and study macroe-

conomic consequences. In this paper we have a different objective. We want to measure

uncertainty among market participants in an opaque market structure. For this, we assume

that our units of observation, highly sophisticated financial market participants, are fully

3The modern literature on information aggregation is too large to do justice to here. Important contri-
butions have focused on auctions (Pesendorfer and Swinkels (1997); Kremer (2002)), decentralized trading
(Gale (1986), Golosov et al. (2014)), asset design (Ostrovsky (2012)) or the trade-off between market size
and information heterogeneity (Rostek and Weretka (2012)).
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rational Bayesian agents. We then use this structural assumption to derive measurement

devices for uncertainty based on market participants’ model-implied beliefs. An additional

novel aspect of our empirical approach is the focus on strategic uncertainty. Here, the struc-

tural approach is particularly useful as data on market participants’ higher-order beliefs are

typically not available. Hortaçsu and Kastl (2012) and Hortaçsu et al. (2018), for example,

use model-implied beliefs derived from a structural estimation to gauge the strategic value

dealers derive from being able to observe client demand in Treasury auctions. Similarly,

Boyarchenko et al. (2019) use a calibrated model to perform counterfactual informational

experiments in the US Treasury market to evaluate the welfare implications of different order

flow information-sharing arrangements among dealers and clients. However, the source of

strategic information in these models is order flow information rather than price data. More

generally, we see the counterfactual experiments we perform on the market’s information

structure as an illustration of the usefulness of a structural approach for empirical work on

information design (Bergemann and Morris (2019)).

This paper also advances the understanding of the role financial benchmarks have for market

functioning. Duffie et al. (2017) show how benchmarks can reduce informational asymmetries

in search markets and thereby increase the participation of less-informed agents. Here, we

focus on the informational content of the benchmark itself. This paper is, to our knowledge,

the first to provide an empirical evaluation of the informational properties of a consensus

pricing mechanism.4 While the importance of benchmarks for financial markets is widely

appreciated, the attempted manipulation of major interest rate benchmarks has led to a

regulatory push to base benchmarks on transaction prices or firm quotes rather than expert

judgment (IOSCO (2013)). However, in illiquid markets and during crisis times, this might

not always be possible. During the COVID-19 turmoil in March 2020, for example, three

out of four candidate forward-looking term rate benchmark providers were unable to pub-

lish benchmarks during a three-day period due to the lack of transactions data (Risk.net).

More generally, this paper illustrates the informational value of non–transaction based price

information for decentralized financial markets. Previous work in this area has focused on

information aggregation mechanisms predominately used in centralized stock markets, in

4Many important financial benchmarks are consensus prices. It is also employed by information providers,
such as Bloomberg, to calculate “generic prices” for a wide range of financial products.
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particular pre-opening prices (Biais et al. (1999), Cao et al. (2000)) and opening auctions

(Madhavan and Panchapagesan (2000)).

The plan of the paper is as follows. Section 2 provides a brief explanation of the option

market structure and the Totem consensus pricing service and presents the data. Section

3 develops the structural model of learning from consensus prices. Section 4 presents the

structural estimation of the model and discusses identification and robustness. Section 5

explains our approach to measuring valuation and strategic uncertainty and presents results.

Section 6 concludes.

2 Market structure and data

We start by providing a short overview of the structure of the options markets. We then

introduce the Totem consensus pricing service and explain the submission process. At the

end of the section, we provide some stylized facts of the consensus price data that motivate

our structural modelling approach.

2.1 Options market structure

Options on the S&P 500 index are arguably the central derivatives contracts for the US

stock market. Option prices contain rich information on market participants’ beliefs about

future stock market movements and risk premia.5 The VIX index, a popular measure of risk

perception in financial markets, is based on S&P 500 option prices. The dominant market

structure for options trading depends on the terms of the contract. Option contracts with

times-to-expiration of less than 6 months and strike prices close to the current index value

(moneyness close to 100) are typically traded via limit order books on options exchanges

such as the Chicago Board Options Exchange (CBOE). Price quotes, transaction prices and

volumes are fully transparent and are available to all market participants. For options with

5An option contract on an asset gives the owner the right (but not the obligation) to buy (call option) or
sell (put option) the asset. The time-to-expiration of (European style) contracts specifies the date at which
the option can be exercised; the strike price specifies the price at which the asset can be bought or sold. The
strike price is often expressed as a ratio to the current price of the asset times 100. This is also called the
moneyness of the option.
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more extreme contract terms, the dominant market structure is OTC trading. Figure 1 dis-

plays the average on-exchange trading activity for S&P 500 index option over the period 2002

to 2015 for contract terms covered in this paper. On-exchange trading activity is decreasing

with the time-to-expiration and the extremeness of the strike price of an option. For option

contracts with times-to-expiration of more than 3 years, trading is almost exclusively OTC.6

Figure 1: This figure displays the percentage of trading days on which an S&P500 option contract has an
aggregate trading volume of at least 10 contracts on US options exchange according. Volumes for exchange-
traded contracts in proximity to a given Totem contract are aggregated and mapped to the corresponding
moneyness/term combination. The x-axis gives the moneyness of the contracts, the y-axis times-to-expiration
in months. The sample period is 2002 to 2015 (Data: OptionMetrics).

The OTC segment of the options market is centred around a network of dealers. These

are typically large investment banks that act as market-makers and trade with each other

and with so-called clients: hedge funds, asset managers, insurance companies, and pension

funds that need to manage portfolio risk or intend to establish speculative positions. In

terms of clientele, the market segment with times-to-expiration below one year is typically

dominated by hedge funds trading short-term stock market volatility. The one- to three-year

segment tends to be the domain of “real money,” asset managers such as BlackRock that

use options in their portfolio insurance strategies. Client demand in the market segment

6Clearing house data (see, e.g., OOC) shows that in overlapping regions, traders often choose an OTC
over an on-exchange trade. This can be because of greater flexibility in contract terms, lower trading fees,
or market impact considerations. Large trades can be difficult to hedge if the trade is publicized. Here the
transparency that comes with on-exchange trading is undesirable.
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with times-to-expiration beyond 3 years tends to come from pension funds and life insurance

companies that have long-term commitments linked to the evolution of the stock market. In

the OTC market, trades are negotiated bilaterally, often over the phone, by email or instant

messaging. Both transaction price and volume remain proprietary information of the two

parties involved in the trade.7 Rather than having to rely on pricing models to hedge option

exposures, dealer banks typically prefer to conduct offsetting trades with each other in the

inter-dealer segment of the options market. Hence, when trading with clients, a dealer bank

not only has to form a view on the fundamental drivers of option values. It also has to

consider the valuations of other dealer banks with whom it can enter into offsetting trades.

In online Appendix 8.1 we develop a stylized model of this market structure to illustrate the

value of information for dealer banks.

2.2 Consensus Price Data

The empirical analysis is based on data from the main consensus pricing service for the

OTC derivatives market, IHS Markit’s Totem service. The service started in February 1997

with 6 major OTC derivatives dealers. Since then, Totem has become the leading platform

for OTC consensus price data, with around 120 participants and a coverage of all major

asset classes and types of derivatives contracts. In this paper, we focus on the consensus

prices for call and put options on the S&P 500 index. We have access to the full history

of Totem contributors’ price submissions. The individual institutions are anonymized, but

we can track each institution’s submissions over time and across contracts. We restrict our

sample to the period December 2002 to February 2015 to achieve a consistent set of option

contracts and a stable group of submitting institutions. Table 1 reports the set of option

contracts we consider (by time-to-expiration and moneyness) as well as the average number

7Some dealers run proprietary electronic trading platforms on which they post price quotes. In 2010,
various electronic trading platforms introduced request-for-quote systems to further increase pre-trade price
transparency. The regulatory reforms after the financial crisis have also introduced mandatory post-trade
reporting to trade repositories for all OTC derivatives transactions. But these are regulatory data and not
available to market participants. Another source for price and volume information in OTC markets is central
counterparties (CCPs). However, unlike for interest rate and credit derivatives, OTC equity derivatives trades
are currently not subject to a central clearing mandate. The current proportion of OTC equity derivatives
trades that is centrally cleared is negligible (see Financial Stability Board (2018)).
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of institutions submitting price estimates for a given contract over our sample period.8

Table 1: Average number of submitters

moneyness
term 60 80 90 95 100 105 110 120 130 150 200
6 27 31 31 31 31 31 31 31 29 27 ·
12 27 30 30 30 30 30 30 30 28 27 ·
24 27 30 30 30 30 30 30 30 28 26 19
36 26 29 29 29 29 29 29 29 27 26 18
48 26 29 29 29 29 29 29 29 26 25 18
60 25 28 28 28 28 28 28 28 26 25 18
84 24 25 25 25 25 25 25 25 24 23 17

This table provides the average number of dealer banks that submit to a given S&P 500 options contract.
The numbers are based on accepted submissions for the given date. The data sample is from December 2002
to February 2015.

The consensus pricing process

The Totem pricing service typically operates at a monthly frequency. At the end of a month,

all submitters are asked to provide their best estimates of the mid-quotes for the set of deriva-

tives contracts to which they contribute. In addition to their estimate of the contract price

itself, this includes other auxiliary information, such as discount factors, dividend yields,

and the price of the underlying asset. Totem indicates the precise time at which valuations

are to be made on the so-called valuation day.

Manipulation incentives for consensus prices of OTC derivatives are generally weaker than

for benchmark interest rates, such as LIBOR, that are compiled using a similar methodol-

ogy. Unlike for interest rate benchmarks, there are no financial products that are indexed to

OTC derivatives consensus prices. Hence, changes in consensus prices do not immediately

impact an institution’s profits and losses from other investments. Furthermore, the Totem

consensus pricing service has significantly more submitters than interest rate benchmarks.

Even for the most extreme contract on average 17 institutions contribute prices, which makes

manipulation of the consensus price strategically challenging. Nevertheless, Totem uses a

8For contracts with time-to-expiration of 6 and 12 months, we exclude the contracts with a moneyness
of 200. For these contracts, prices are close to zero and crucially depend on the numerical precision used by
Totem submitters when reporting prices. Additionally, the inversion of the prices to Black-Scholes implied
volatilities can become numerically unstable.
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range of formal and informal procedures to discourage price manipulation and incentivize

high-quality price submissions. For the S&P 500 option service, each submitter is obligated

to contribute to the contracts with time-to-expiration of 6 months and moneyness, expressed

as the ratio of the option’s strike price to the current index level, between 80 and 120. ‘No-

arbitrage” arguments between contracts allow for consistency checks between contracts. In

case of doubt, additional private conversation between submitters and IHS Markit employees

(often former market participants) can take place to gather additional information on indi-

vidual prices and market conditions. Price submissions that are deemed of low quality do

not enter the consensus price calculation, and the submitting institution does not receive the

consensus price for that submission period. This serves as a formal punishment mechanism

for low-quality submissions.

Accepted price submissions are then used to calculate consensus prices, one for each deriva-

tives contract. The highest and lowest accepted price are dropped from the sample before

the mean is calculated. Totem provides contributors with the new consensus prices within

5 hours of their initial price submissions. The consensus price for a given option contract

is the arithmetic mean of the accepted price estimates. Totem submitters only receive ag-

gregated data from the service. They do not observe data on other institutions’ individual

submissions. We provide a detailed description of the submission process and the quantities

submitted in online Appendix 8.2.

Valuation differences among dealers

To provide a sense of the cross-sectional dispersion in Totem submitters’ option valuations,

the left panel of Figure 2 depicts the cross-sectional standard deviation of price submissions

averaged over the sample period.9 There is considerable variation in the dispersion of dealers’

submitted prices across the contract space. It is highest for short-dated options with extreme

strike prices. For a given time-to-expiration, the dispersion is lowest for strike prices close

to the current index level, that is a moneyness of 100. The price dispersion across dealers

tends to decrease with time-to-expiration. These cross-sectional differences are economically

9Throughout the paper, we express option prices in terms of Black-Scholes implied volatilities (IVs).
This is the market convention for quoting option prices and facilitates the comparison of option prices across
times-to-expiration and strike prices.
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meaningful; they are of similar magnitude to bid-ask spreads observed on option exchanges

in regions where OTC and on-exchange trading overlaps, but they display a low level of

correlation with these bid-ask spreads over time, as can be seen in Figure 7 of the online

Appendix.

(a) Cross-sectional dispersion (b) Half-lives

Figure 2: The left figure displays the time-series average of the cross-sectional standard deviation of
submitters’ implied volatility estimates for S&P 500 OTC index options. The right figure presents estimates
for the half-life (in months) of the individual deviations from the contemporaneous consensus price. Half-

lives derive from AR1 coefficients estimates of (1): t̂c = log(0.5)/ log(β̂c). The estimates are from a pooled
ordinary least squares regression. The y-axes show times-to-expiration in months, the x-axes moneyness.
The sample period is December 2002 to February 2015.

The right panel of Figure 2 shows the persistence of individual dealers’ deviations from the

consensus price. For each option contract, we estimate the following AR(1) regressions to

quantify this persistence:

pci,t − pct = βc
(
pci,t−1 − pct−1

)
+ εci,t. (1)

Here pci,t is institution i’s price submission for contract c in period t and pct is the corre-

sponding consensus price. The right panel of Figure 2 reports the estimated β coefficients

expressed as half-lives, i.e., the number of months it takes to close half of the gap between an

individual dealer’s price estimate and the consensus price. Dealers’ deviations from consen-
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sus are persistent for all contracts. The U-shaped persistence pattern in moneyness partially

mirrors the cross-sectional dispersion in the left panel of Figure 2.

From these statistics of the raw data, we draw some preliminary observations that guide

our structural modelling. First, all dealers are asked to provide their best estimate for the

mid-quote of a given contract, i.e. a market-wide price. If all dealers had access to the same

information and used the same models, they should all provide the same price estimate. In

this paper we abstract from model disagreement or model uncertainty and assume that deal-

ers form expectations by updating beliefs using a model that itself is common knowledge.

Under this interpretation of the data, the observed cross-sectional dispersion necessarily re-

veals informational frictions in the OTC market. Furthermore, these frictions vary across

market segments.

Second, these informational frictions have to derive from dealer banks’ private information.

Imperfect information that is observed by all dealer banks does not induce cross-sectional

dispersion. However, the cross-sectional dispersion alone cannot identify the precision of

private valuation information, as both very precise and very imprecise private information

imply low cross-sectional dispersion. This illustrates the conceptual problem of using the

cross-sectional dispersion of the raw data for the measurement of informational frictions.

Last, if the consensus price perfectly aggregates dispersed information, all bank dealers

should have the same expectation about the current mid-quote after observing the current

consensus price. Any deviation from the consensus price in the next period has to be the

result of new private information. But this implies that a dealer’s past relative position

to the consensus price has no predictive power for its future relative position; individual

deviations from consensus cannot be persistent. This is clearly rejected by the data. The

positive persistence points to imperfect information aggregation and, consequently, long-lived

private information at the level of individual dealers.
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3 A Model of Consensus Pricing

We model the consensus pricing process as a social learning problem. Dealers learn about a

time-varying fundamental value from private signals and the consensus price. We derive the

consensus price process as an equilibrium outcome of the model and show what structure

this imposes on dealers’ belief updating dynamics.

3.1 The model

A large number of dealers, modelled as a continuum indexed i ∈ (0, 1), participate in a

consensus pricing service. At discrete submission dates t = {...,−1, 0, 1, ...} each dealer i

submits its best estimate for the current value of an option, θt, to the service. θt is latent

and follows an AR(1) process,

θt = ρ θt−1 + σu ut with ut ∼ N (0, 1) , (2)

and −1 < ρ < 1. We do not explicitly model the economic forces responsible for the variation

in fundamental option values. A possible interpretation is based on a demand-based option

pricing model in the spirit of Gârleanu et al. (2009).10

At each submission date t, dealers observe two signals about the fundamental option value,

a noisy private signal and the consensus price. Dealer i’s noisy private signal is

si,t = θt + ση ηi,t with ηi,t ∼ N (0, 1) , (3)

where 1/σ2
η measures the precision of the private signal. The precision does not depend on

i, that is all dealers receive signals of equal quality. The private signal structure implies that

dealers are able to infer the current fundamental value if they pool their private informa-

10Under a demand-based interpretation, changes in the fundamental value derive from time-varying client
demand that is satisfied by risk-averse broker-dealers. ut is an aggregate demand shock for options with a
given strike price and time-to-expiration. The AR(1) process for the fundamental value can be obtained in
a setting in which the underlying asset follows a geometric Brownian motion, as is assumed in the Black-
Scholes model (Black and Scholes (1973)). All time variation in fundamental option prices (expressed in
terms of implied volatilities) is then driven by client demand shocks that cannot be perfectly hedged using
the underlying, for example because of an inability to trade continuously. We provide a derivation of this
setup in online Appendix 8.3.
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tion; there is no aggregate noise in private signals. Taking a demand-based pricing view for

our OTC market setting, this is a natural assumption. Trades with clients are the primary

source of a dealer’s private information. These trades provide an imperfect signal of aggregate

demand conditions. Pooling client demands across dealers reveals current aggregate demand.

In addition to the private signal, each dealer observes last period’s consensus price pt−1.

The timing of the consensus pricing process under which dealers only obtain the consensus

price once they have submitted their estimates is a key difference to standard rational ex-

pectations equilibrium (REE) models. As the consensus price is a signal of the market’s past

state, it does not supplant a dealer’s noisy private signal even if it is perfectly revealing. We

model the current consensus price pt as a noisy signal of the average estimate of θt across

dealers. Dealer i’s information set at the time of period t’s price submission consists of the

(infinite) history of previous consensus prices and the private signals that i has observed up

to period t, that is Ωi,t = {si,t, pt−1,Ωi,t−1}. All dealers submit their best estimate of θt to

the service. For each dealer, we take this to mean its conditional expectation of θt given Ωi,t.

We denote this conditional expectation by

θi,t = E (θt|Ωi,t) ,

and the corresponding cross-sectional average across dealers by

θ̄t =

∫ 1

0

θi,t di.

The consensus price itself is a noisy signal of this average expectation,

pt = θ̄t + σε εt with εt ∼ N (0, 1) . (4)

We do not specify dealers’ preferences, which would determine why they value the consensus

price information. Certain preference specifications could create an incentive to strategically

manipulate the consensus price, for example in order to experiment (e.g. Brancaccio et al.

(2020)) or to gain a competitive advantage. However, given the assumption of a continuum

of dealers (and mild technical restrictions on admissible submissions), no single submitter

can influence the consensus price. Hence, asking dealers to submit their best estimate of θt
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is compatible with their incentives.11

Modelling the consensus price as a noisy public signal of average expectations is motivated by

two considerations. First, as previously discussed, Totem eliminates the lowest, the highest,

and problematic price submissions from the consensus price calculations. Hence, the con-

sensus price itself does not exactly correspond to the average submission. Second, while we

assume a continuum of dealers, we want to allow for the possibility that the consensus price

does not fully reveal the average expectation and, consequently, last period’s fundamental

value.12 Knowing last period’s fundamental value rules out long-lived private information.

But such long-lived private information is needed to capture the persistence of the deviations

of individual price submissions from the consensus price, a feature we observe in the data.

A remaining question is how commonly observed exchange-based option price data, for ex-

ample prices listed on the Chicago Board Options Exchange (CBOE), fit into the above

framework. A way to think about such data within our model is to interpret a dealer’s

submission, θi,t, as the difference between the dealer’s best estimates of the current funda-

mental value of the OTC contract and the current corresponding exchange-based price for the

option. If no exchanged-based prices are available for a given Totem contract, an industry-

standard, and hence commonly known, option pricing model calibrated to exchange-based

prices for other contracts could be used instead. To map our data into the model, a dealer

i’s Totem submission and the corresponding consensus price are then θi,t, respectively pt,

plus the price for the contract as given by exchange-based trading activity. An important

assumption under this interpretation of the data is that exchange-based prices do not con-

tain any information about ut, ηi,t, and εt that is not already contained in a dealer’s history

of private signals and past consensus prices. In that sense, these shocks should be seen as

specific to OTC market conditions, which is consistent with the stated purpose of the Totem

consensus pricing service.13

11Raith (1996) gives a theoretical analysis of the incentives for competitive firms to participate in (truthful)
information-sharing arrangements. In online Appendix 8.1 we develop a stylized model that illustrates the
value of consensus pricing information for dealers that operate in an OTC market.

12We estimate σε and allow the parameter to be 0. This implies that full revelation is a possible outcome.
13In our estimation, we treat exchange-based prices as latent and use contract fixed effects. Explicitly

incorporating exchange-based price data for option contracts that are exclusively OTC-traded would require
specifying the option pricing model that is used by all dealers and taking a stand on how to calibrate this
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3.2 Learning from consensus prices

In order to characterize dealer i’s submission to the consensus pricing service, we need to

calculate the dealer’s conditional expectation E (θt|Ωi,t). Its information set Ωi,t depends on

all other dealers’ submissions via the consensus price process pt. This information set is en-

dogenous as pt is both an input and an output of the joint learning process of the consensus

pricing participants. As first pointed out by Townsend (1983), signal extraction problems

in which signals are equilibrium variables, such as prices, typically do not admit representa-

tions in which a finite number of variables can summarizes the current state of the system.

For very restrictive settings, frequency domain techniques have been successfully employed

to obtain exact finite state space representations, e.g. Kasa (2000). However, a popular

direction of attack is truncation, i.e. to show that the original problem is well approximated

by a finite state space even if the actual solution requires an infinite number of states (e.g.

Sargent (1991), Lorenzoni (2009), Huo and Pedroni (2020)).

This is the approach taken here. We adopt an iterative algorithm previously used in Nimark

(2014) and Barillas and Nimark (2017) to solve our filtering problem. The algorithm works

as follows:

1. Start with any covariance-stationary process (p0
t ) that lies in the space spanned by

linear combinations of current and past aggregate shocks (ut) and (εt).

2. This consensus price process (p0
t ) yields information sets for all i and t defined recur-

sively by Ω0
i,t = {si,t, p0

t−1,Ω
0
i,t−1}.

3. Given information set Ω0
i,t, dealer i can compute the conditional expectation E(θt|Ω0

i,t)

for period t under the assumed stochastic process for (p0
t ).

4. Averaging the expectations across submitters yields a new consensus price process

p1
t =

∫ 1

0

E(θt|Ω0
i,t) di+ σε εt for all t.

5. If the distance (in m.s.e.) between (p0
t ) and (p1

t ) is smaller than some pre-specified

model to observed prices.
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stopping criterion, stop. Otherwise, go to step 2 with (p1
t ) as the new consensus price

process and so on.

For any initial choice of (p0
t ), the sequence of price processes {(pnt )}n converges (in m.s.e.) to

a unique limit process (pt), the solution of the original filtering problem, when the integral

in step 4 is a contraction on the space of covariance-stationary price processes. Starting with

the initial guess p0
t = θt + σε εt allows the problem to be solved by a sequential application

of the Kalman filter. It also provides an upper bound on the approximation error if the

algorithm is stopped after a finite number of steps.

After n steps, the equilibrium learning dynamics are approximated by a linear state-space

system with an n + 1 dimensional state vector xt. The first and second element of xt are

the fundamental value θt and the cross-sectional average expectation θ̄t, respectively.14 The

state evolves according to

xt = Mxt−1 +Nvt with vt = (ut, εt−1)T, vt ∼ N(0, I2). (5)

The matrices M and N are known functions of the model parameters, namely {ρ, σu, σε, ση}.
A dealer’s signals in period t can be expressed as noisy observations of the state,15

si,t = eT1 xt + ση ηi,t = θt + ση ηi,t,

pt−1 = eT2 xt−1 + σε εt−1 = θ̄t−1 + σε εt−1.

The two signals can be written in vector form as

zi,t = D1 xt +D2 xt−1 +B εi,t,

with zi,t = (si,t, pt−1)T and εi,t = (vTt , ηi,t)
T.

14The k-th element of xt is the cross-sectional average of dealers’ k-th order expectation of θt given their

information in period t. The average k-th order expectation is defined recursively as θ
(k)
t =

∫
E(θ

(k−1)
t |Ωi,t) di

with θ
(1)
t = θ̄t. Appendix 7.1 provides a more detailed explanation of these higher-order expectations and

the solution algorithm.
15Here, eTn is a vector with 1 in the nth position, 0 otherwise.
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We can now use the Kalman filter to obtain dealer i’s beliefs about θt and θ̄t, the first two

elements of xt, given the information in Ωi,t. The linear-normal structure of the state-space

system implies that dealer i’s beliefs are normally distributed,

xt | Ωi,t ∼ N (xi,t,Σ
p) , (6)

where the conditional expectations about the state evolve according to

xi,t = Mxi,t−1 +K (zi,t − (D1M +D2)xi,t−1) , (7)

and K is a (n + 1) × 2 dimensional matrix of Kalman gains. Here K and the covariance

matrix of dealers’ beliefs Σp are known functions of the model parameters.16

4 Estimation

We estimate the model’s parameter vector φ = {ρ, σu, σε, ση} separately for each contract.

This contract-by-contract approach is consistent with the above model and we can prove that

the structural parameters of the model are identified. Furthermore, estimating each contract

separately allows us to verify that coefficients estimates do not vary substantially across ad-

jacent contracts. This is a reasonable a priori assumption in our context and provides an

additional sanity check for the estimation results. A joint estimation, on the other hand,

would require imposing a correlation structure on fundamental shocks and signals across

contracts. As not all participating dealer banks submit to all contracts, modelling composi-

tional effects would add an additional layer of complexity to a joint estimation framework.

For a given contract, our data consists of the panel of Totem price submissions by individual

dealers and the corresponding consensus price. We denote by ιt ⊂ {1, 2, .., S} the set of

dealers active in t. S is the total number of distinct dealers that have submitted to Totem

over the course of our sample period. The time series of submissions is given by (pt)
T
t=1, where

16Given the infinite history of past signals, the covariance matrix Σp and the matrix of Kalman gains K
are not time dependent. Also, Σp and K are not dealer-specific as dealers are symmetrically informed. They
all receive signals of the same quality. Superscripts, here p, are used to index information structures. Later,
we modify the information structure of the market in counterfactual experiments.
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pt = (pi,t)i∈ιt is a |ιt|-dimensional vector consisting of the individual period t consensus price

submissions. Our data set for a given contract, (y)Tt=1, then consists of the time series

of dealers’ price submissions for this contract and the corresponding consensus price, i.e.

yt = (pt ,pt)
T.17

4.1 Likelihood function and estimation

To estimate the model for a given contract, we cast it into state-space form. The panel of

individual price submissions and the time series of consensus prices constitute the available

observations of the system. Based on Section 3, the latent state space has the following

dynamics:

xt = M(φ)xt−1 +N(φ) vt , vt ∼ N(0, I2),

where vt = (ut εt−1)T. M(φ) and N(φ) are obtained by employing the previously explained

solution algorithm for a given parameter vector φ. We assume that dealer i’s price submis-

sion for period t is its conditional expectation of θt, i.e. pi,t = θi,t.

Dealer i’s conditional expectations of the current state xt are updated as follows,

xi,t = M(φ)xi,t−1 +K(φ)

[(
si,t

pt−1

)
− (D1M(φ) +D2)xi,t−1

]
. (8)

In the estimation, we treat a dealer i’s private signal si,t as a latent variable. It is observed

by the dealer but not by the econometrician. The noise in the private signal is assumed to be

uncorrelated across submitting dealers and time. The consensus price pt is observed by both

the dealers and the econometrician. The econometrician only observes the first element of

dealer i’s conditional expectations xi,t which is θi,t, dealer i’s conditional expectation of the

current fundamental value. We assume that it is this expectation that the dealer submits to

the Totem service.

17To be precise, we take the natural logarithm of the implied volatility (IV) corresponding to, respectively,
dealer i’s price submission and IHS Markit’s consensus price for each time t. We then subtract the time
series average of the logged consensus IV series from all individual logged IV time series and the consensus
IV series itself to remove a contract specific level. The resulting objects are series of pi,t for each dealer j
and the consensus series pt.
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Equation (8) provides us with a disciplined way of modelling the belief updating dynamics

at the level of the individual dealer. It illustrates both the usefulness of the model to impose

structure on belief data and the importance of observing a time series of beliefs at the in-

dividual level to estimate dynamic social learning models. A more simplistic approach that

estimates belief-updating dynamics using only first-order expectations without taking into

account the importance of higher-order expectations in the filtering problem will suffer from

an omitted variable bias.

Given the linearity of the above system and the joint normality of all shocks, the likelihood

function for the observed data (yt)
T
t=1 can be derived using the Kalman filter. We obtain

estimates for the parameter vector φ using MCMC methods with diffuse priors.18 We con-

strain σu, σε, and ση to be positive and 0 < ρ < 1. For each contract we run chains of length

100.000 with the Metropolis-Hastings algorithm and disregard the first 10.000 draws. We

subsequently pick every 10th draw to construct the posterior distribution of the parameters.

Appendix 7.2 provides a detailed derivation of the filter for the above model. Table 3 in

the Appendix reports parameter estimates and standard errors for ρ, σu, σε, and ση for all

contracts.

4.2 Identification

The Appendix 7.3 provides a formal proof of identification for the model. Here, we give a

short summary of which moments of the data help us to identify the structural parameters of

the model. The time-series variance of the differences between pt and cross-sectional average

of submission identifies σε. The speed at which individual deviations from the average

submission mean-revert determines the weight dealers put on their prior expectations (as

opposed to weight put on news in the current signal and consensus price). Knowing this

weight allows us to isolate changes in price submissions that are due to new information a

dealer received in a given period. As these news are linked to the current fundamental, the

autocorrelation of these expectation updates that have been “cleaned” of prior expectations

allow us to identify ρ, the persistence in the fundamental value process. The weight dealers

18While we use Bayesian methods to obtain the posterior parameter distributions, using diffuse priors
implies the estimates can also be thought of as classical maximum-likelyhood point estimates with the
standard deviations corresponding to classical standard errors.
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put on their prior depends on how persistent the fundamental is and how high the quality

of their new information is, i.e. the signal-to-noise ratio of their signals. Having identified

ρ, we can now identify this signal-to-noise ratio from the weight dealers put on their prior

expectations. The signal-to-noise ratio depends on the variance of the fundamental shocks,

σ2
u, and the precision of private signals and the consensus price as determined by ση and

σε. We have already identified σε. The relative weight dealers put on the consensus price

as opposed to the private signal depends on the relative precision of these two signals. This

allows us to identify ση and, finally, σu from the signal-to-noise ratio.

4.3 Model fit and robustness checks

To judge how well the model fits the data, we compare the model-implied cross-sectional

dispersion of price submissions and the time-series volatility of the consensus price to their

empirical analogues. In the online Appendix, the ratio of the model-implied cross-sectional

standard deviation and the empirical cross-sectional standard deviation are displayed. This

ratio for the different contracts is between 0.909 and 1.125, which implies that the model is

able to reproduce the size of the cross-sectional dispersion for the different contracts. We also

do not find a statistically significant difference between the model-implied and the empirical

consensus price volatility.

The sample period includes two peculiar periods: the low volatility period from 2002 to

2006 and the Great Recession from 2007 to 2010. The parameter estimates for these periods

might be very different. However, we find that results do not change if we consider these two

periods separately. Another potential split is that of dealers that participate for a limited

time frame and routine dealers. We therefore re-estimate the model excluding dealers who

have submitted for less than 40% of the total sample period. The parameter estimates are

comparable to the results for the entire sample. Including only the ‘routine’ dealers makes the

contrast between the at-the-money (ATM) and the out-of-the-money (OTM) options slightly

larger. The estimation results for these three additional data treatments are reported in the

online Appendix.
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5 Results

This section derives model-implied measures of valuation and strategic uncertainty based on

dealers’ posterior beliefs. The estimates of the structural model parameters provide us with

estimates for these uncertainty measures and we show how dealer uncertainty varies across

market segments. Counterfactual experiments on the option market’s information structure

allow us to quantify the informational value of the consensus prices for dealer banks.

5.1 Valuation and strategic uncertainty

At the time of the period t consensus price submission, dealer i’s posterior beliefs about the

current fundamental value of a contract, θt, and the cross-sectional average expectation of

this value, θ̄t, are jointly normally distributed with(
θt

θ̄t

)
| Ωi,t ∼ N

((
θi,t

θ̄i,t

)
,

(
(σp11)2 σp12

σp12 (σp22)2

))
. (9)

The dealer’s conditional expectations about θt and θ̄t are updated according to

θi,t = ρ θi,t−1 + ks (si,t − ρ θi,t−1) + kp
(
pt−1 − θ̄i,t−1

)
, (10)

θ̄i,t = m2 · xi,t−1 + k̄s (si,t − ρ θi,t−1) + k̄p
(
pt−1 − θ̄i,t−1

)
. (11)

The covariance matrix in (9) corresponds to the top left 2 × 2 sub-matrix of Σp given in

(6). The parameters ks and kp in (10) are the Kalman gains for the private signal and the

consensus price, respectively. The Kalman gains are the weights a dealer puts on the “news”

contained in the signals when updating expectations about the fundamental value θt. They

correspond to the first row of K in (7). Similarly, k̄s and k̄p in (11) are the Kalman gains

for the private signal and consensus price for the average expectation θ̄t. They correspond

to the second row of K.

Our measures of valuation uncertainty and strategic uncertainty are the variance of a dealer’s

forecast errors for the fundamental value, θi,t−θt, and the variance of its forecast error for the

average expectation, θ̄i,t− θ̄t, at the time of the consensus price submission. These variances
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are (σp11)2, respectively (σp22)2, as given in (9). The correlation between the two forecast

errors, ρ12 = σp12/(σ
p
11σ

p
22), is a natural measure for what Angeletos and Pavan (2007) call

the “commonality of information”: higher correlations imply that different dealers interpret

new valuation information in a similar way.

We start by developing some intuition for the relationship between valuation uncertainty,

strategic uncertainty and the commonality of information before presenting the estimation

results. To do so, we split up the expectation updating for θt into two steps. First, the

dealer updates its expectations about θt−1 after observing the consensus price pt−1. Call this

updated expectation θ+
i,t−1. Next, the dealer receives the private signal si,t and updates its

expectation to θi,t. This is what the dealer submits to the Totem service. We can therefore

decompose the submission as follows,

θi,t = (1− ks)ρ θ+
i,t−1 + ks si,t.

Averaging across dealers and noting that idiosyncratic noise cancels out, the average expec-

tation across dealers can now be expressed as

θ̄t = (1− ks)ρ θ̄+
t−1 + ks θt.

Finally, taking expectations of the above expression conditioning on Ωi,t and subtracting the

original equation allows us to link the forecast errors for θt and θ̄t,

θ̄i,t − θ̄t = (1− ks)
[
E(ρ θ̄+

t−1|Ωi,t)− ρ θ̄+
t−1

]
+ ks (θi,t − θt) .

The above expression shows that the forecast error for θ̄t is a weighted sum of the forecast

error for θt and the forecast error for the average prior expectation about θt before observing

the private signal in period t. Dealer i’s forecast errors for θ̄t and θt are perfectly correlated,

i.e. ρ12 = 1, if the dealer knows the average expectation θ̄+
t−1. In our model this can only

happen if the consensus price perfectly aggregates all dispersed information. In that case, all

dealers have the same expectation after observing the consensus price, namely θ̄+
t−1 = pt−1,

and the average posterior expectation is given by θ̄t = (1− ks)ρ pt−1 + ks θt. It follows that

dealers are less uncertain about θ̄t than about θt as σp22 = k2
s σ

p
11 and |k2

s | < 1.

23



If dealers are uncertain about the average expectation θ̄+
t−1, this simple relationship no longer

holds. (10) can be written as

θi,t = (1− k)ρ θi,t−1 + ks si,t + kp pt−1 + kp
(
θi,t−1 − θ̄i,t−1

)
with k = ks +

kp
ρ
. (12)

We see that if dealers put strictly positive weight on their individual prior expectations, that

is 1− k > 0, their expectations are partially dependent on their individual history of private

signals. Hence, dealers do not return to a common market perception after observing the

consensus price. A lack of common perspective on past market conditions partially feeds

into uncertainty about current market conditions as given by θ̄t.

5.1.1 Price versus private information

Figure 3 displays estimates of the Kalman gains for the private signal and consensus price

for both the fundamental value, that is ks and kp, and for the average expectation, that is k̄s

and k̄p. The graphs show the variation in Kalman gains across moneyness for options with a

fixed time-to-expiration of 12 months. For contracts with moneyness close that 100, dealers

almost put full weight on their private signal both when updating their expectations about

the current fundamental value (top left panel) and their expectation about the location of

the current average expectation across dealers (bottom left panel). The consensus price sig-

nal receives correspondingly low weight in the updating of expectations about fundamental

values (top right panel) and expectations about the location of average expectations (bottom

right panel). As we move towards OTM contracts, both put and call options, the consensus

price increases in importance and the weight on private signals decreases. Table 4 in the

Appendix reports estimates for all contracts. They confirm the pattern observed for con-

tracts with 12 months to expiration. The Kalman gains for the consensus price are higher for

more extreme options contracts that are predominately OTC-traded. In market segments

that overlap with exchange-based trading, dealers’ private signals receive a higher weight in

updating expectations and the consensus price is relatively less important. Lastly, note that

for a given contract the Kalman gain for the consensus price is always higher for updating

expectations about the location of the average expectation than for updating expectations

about the fundamental value.
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A key structural parameter for understanding this variation in Kalman gains across market

segments is 1/ση, the precision of the private signal. The estimates for ση, given in the fourth

row of Table 2, show that dealers receive very precise private signals for contracts that overlap

with active exchange-based trading activity.19 Consequently, the implied Kalman gains for

these contracts in Figure 3 show that dealers put essentially full weight on their private

signal and largely ignore the information contained in the consensus price when updating

expectations about θt. For option contracts with low exchange-based trading activity, the

private signals are estimated to be noisier. Therefore, increasingly more weight is given to

the consensus price. When updating expectations about θ̄t, the consensus price receives

relatively higher weight for all contracts. This highlights the scarcity of information in these

market segments, but it also illustrates the strategic value of the consensus price as a focal

public signal. Row five of Table 2 reports that 1-k, the weight dealers put on their prior

expectation as given in (12), is estimated to be strictly positive for all contracts. Hence,

dealers do not put full weight on new information, especially not for exclusively OTC-traded

contracts. Furthermore, ρ12 is estimated to be strictly smaller than 1. This implies that a

dealer’s forecast errors for fundamental and average expectation are not perfectly correlated.

As explained in Section 5.1, this leads to long-lived private information and, consequently,

dispersed priors among dealers.

5.1.2 Uncertainty smile and term structure

As dealers’ beliefs are normal distributions, we display valuation and strategic uncertainty

in terms of 95% posterior intervals. That is, having observed past period’s consensus price

and the current private signal, a dealer attributes a probability of 0.95 to the event that the

current fundamental value lies in an interval of length 3.92σp11 centered around its current

expectation θi,t. The length of this posterior interval thus gauges a dealer’s uncertainty about

the fundamental value θt at the time of submission. Similarly, for strategic uncertainty, the

length of the posterior interval is 3.92σp22 and it is centred around θ̄i,t. It measures a dealer’s

uncertainty about the location of the average expectation for θt across dealers.

19Table 2 provides the parameter estimates for the contracts with time-to-expiration of 12 months. In
the Appendix we provide the estimates for the complete contract space. Table 3 provides estimates for ρ,
σu, σε and ση, and Table 5 for k and ρ12.
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Table 2: Sample parameter estimates and implied quantities

60 80 90 95 100 105 110 120 150

ρ 0.967 0.930 0.939 0.949 0.941 0.930 0.949 0.967 0.969
(0.015) (0.024) (0.027) (0.028) (0.022) (0.025) (0.022) (0.013) (0.017)

σu 0.047 0.076 0.082 0.086 0.091 0.095 0.095 0.073 0.135
(0.001) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.002) (0.003)

σε 0.055 0.004 0.006 0.007 0.009 0.011 0.014 0.036 0.262
(0.004) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.003) (0.016)

ση 0.041 0.014 0.010 0.010 0.010 0.011 0.015 0.036 0.281
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.011)

k 0.733 0.998 0.996 0.996 0.995 0.993 0.989 0.901 0.490
(0.011) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.010) (0.014)

ρ12 0.974 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.922
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003)

This table presents the mean and standard deviation of the model parameter estimates and implied quantities
for contracts with time-to-expiration of 12 months. The header gives the moneyness of contracts. Rows 1 to
6 show estimates for the persistence of the process for the fundamental, ρ, and the standard deviation of the
shock to the fundamental, σu, the standard deviation of noise in consensus price, σε, the standard deviation
of noise of the private signal, ση, the weight dealers put on new information, k, and the correlation between
the forecast error for fundametal value and average expectations, ρ12. Estimates are obtained using MCMC
methods assuming diffuse priors for all parameters. The standard deviation of the posterior distribution of
the parameter is given in parentheses below its mean (0.000 signifies standard deviations below 0.0005). The
sample period is December 2002 to February 2015.

Figure 4 shows these posterior intervals for valuation uncertainty (left panels) and strategic

uncertainty (right panels). As dealers’ expectations are varying over time, we center all

posterior intervals around the time-series mean of the corresponding consensus price. For

our purpose, this is immaterial. Given the stationarity of the model, the lengths of the pos-

terior intervals do not vary over time. The top panels show the “uncertainty smile”, that is

posterior intervals for fixed times-to-expiration of 12 months (black) and 5 years (red) across

moneyness. The bottom panels display the term structure of uncertainty, i.e. they show how

posterior intervals for ATM puts with moneyness 100 (black) and OTM put with moneyness

60 (red) vary by times-to-expiration. Table 6 in the Appendix reports the length of 95%

posterior intervals for all contracts. The two top panels in Figure 4 show the well-known

“smile” of the implied volatility curve. OTM put options (moneyness below 100) tend to

be relatively more expensive than ATM put options or OTM call options reflecting market

participants’ demand for insurance against drops in the S&P 500 index. The width of the

posterior intervals shows that for options with more extreme strike prices (further away from

moneyness 100), valuation and strategic uncertainty are higher. These areas correspond to
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Figure 3: These figures present a dealer’s Kalman gains for private signals and consensus prices. The
horizontal axis denotes the moneyness of the option contracts. The black dots in the figures represent the
Kalman gain extracted from the K matrix in Equation (9). The top figures depict ks and kp. From left
to right, these are the weights put on the private signal and consensus price when updating the posterior
expectation about the fundamental θt. The bottom figures depict k̄s and k̄p. From left to right, these are
the weights put on the private signal and consensus price when updating the posterior expectation about
average expectations θ̄t. The 95% centred interval of the posterior distribution of Kalman gain estimates
are given by the dotted lines surrounding the dots. The Kalman gains are for the option contracts with a
time-to-expiration of 12 months. The sample period is December 2002 to February 2015.

market segments in which trading is predominantly or exclusively OTC, as was previously

shown in Figure 1. For options with moneyness 150 and time-to-expiration of 12 months, for
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example, the posterior intervals are on the order of 8 volatility points. This is substantial

given that the time-series average and standard deviation of the consensus price for this con-

tract are 13 and 3.8 volatility points, respectively. While the term structure of uncertainty is

relatively flat for ATM options (black posterior intervals in bottom panels), it is downward

sloping for OTM puts (red posterior intervals in bottom panels).

These results reflect the estimated lower precision of the private signal, ση, for OTM contracts

and especially OTM call options, as can be seen in row four of Table 2. Given the relatively

low precision of private signals, more weight is put on prior expectations. This, in turn, is

the source of ”long-lived” private information and sizable strategic uncertainty. It contrasts

to posterior intervals well below one volatility point for options in market segments with

likely more trading activity. Here, private signals are precise, which implies lower values of

σp11. As all dealers are symmetrically informed and receive private signals from the same

distribution, strategic uncertainty is small as well. This difference in results illustrates that

for the exclusively OTC-traded areas of the option market, dealers are not only relatively

uncertain about the correctness of their own option valuations, but also face substantial

uncertainty about the relative position of their valuation to the average market valuation.

5.2 The informational properties of consensus prices

We now consider two counterfactual information structures for the options markets to gauge

the informational content of the consensus price and its influence on dealer banks’ uncer-

tainty. We assume that the structural parameters of the model are invariant to these in-

formational experiments. In particular, we assume that dealer banks do not adjust their

information acquisition strategy, which would affect the precision of the private signal.20

This assumption is not problematic when we use the counterfactual settings to measure the

informational value of the consensus price in the current market setting. However, it becomes

important when we consider the implications of changing the market’s information structure.

To study the informativeness of the consensus price for dealer banks, we consider an in-

formation structure under which dealers only receive private signals. Denote by Σs the

20If private signals derive from OTC trading activity this would, for example, imply that dealers do not
change their trading activity to generate more valuation information through experimentation.
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Figure 4: These figures display the variance of dealers’ posterior beliefs expressed in terms of posterior
intervals centred on the sample mean of the corresponding consensus price. The left figures depict the 95%
posterior intervals for the fundamental value θt, [p ± 1.96 · σp11], as given in (9). The figures on the right
display the posterior intervals for the average expectation θ̄t, [p± 1.96 · σp22]. p is the time-series average of
the corresponding consensus price. The two top panels depict the posterior intervals by moneyness for the
option contracts with a fixed time-to-expiration of 12 months and 60 months. The two bottom panels
show the term structure of the uncertainties for ATM options with fixed moneyness 100 and OTM options
with fixed moneyness of 60. The sample period is December 2002 to February 2015

covariance matrix of dealer i’s posterior beliefs under this counterfactual information set,

namely Ωs
i,t = {si,t,Ωs

i,t−1}. This covariance matrix can be obtained by solving a standard
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single-agent learning problem and evaluating it at our parameter estimates for {ρ, σu, ση}.21

We use the percentage reduction in uncertainty that results from having access to the con-

sensus price as a measure of price informativeness,

∆p
i =

(σsii − σ
p
ii)

σsii
.

Note that we evaluate the informativeness of the consensus price both with respect to valu-

ation information, that is information about θt, as given by ∆p
1 and with respect to strategic

information, that is information about θ̄t, as given by ∆p
2.

To elicit the efficiency of the consensus price mechanism in aggregating dispersed information,

we introduce a counterfactual setting with a fully efficient consensus price that perfectly

reveals last period’s fundamental value. As the price reveals θt−1, it is a common prior

shared by all dealers before they receive new private signals in t. In addition to providing a

benchmark for efficiency, this counterfactual also helps us understand how big an impediment

the lack of a common prior is for creating a common understanding of market conditions.

We denote by Σθ the counterfactual covariance matrix of posterior beliefs for a dealer who

receives a fully efficient consensus price in the above sense. We measure the inefficiency

of the consensus price by the increase in the standard deviation of posterior beliefs when

moving from a fully efficient price to the current consensus price. We express this increase

as a ratio to the standard deviation of posterior beliefs without consensus price,

∆θ
i =

(
σpii − σθii

)
σsii

.

We use this somewhat unusual definition of inefficiency to obtain the following decomposition,

1 =
(σsii − σ

p
ii)

σsii︸ ︷︷ ︸
∆p
i

Price informativeness

+

(
σpii − σθii

)
σsii︸ ︷︷ ︸
∆θ
i

Price inefficiency

+
σθii
σsii︸︷︷︸
∆R
i

Residual informational
friction

(13)

21In Appendix 7.4 we derive the stationary posterior covariance matrices for first- and second-order beliefs
for all counterfactual informational scenarios.
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Given the lagged nature of the consensus pricing mechanism, even a fully efficient price does

not eliminate all uncertainty about asset values. We also quantify the potential for fur-

ther uncertainty reduction that is outside the scope of this specific information aggregation

mechanism and refer to it as the residual informational friction. The potential for uncer-

tainty reduction in a market structure without consensus prices can thus be decomposed into

(consensus) price informativeness, (consensus) price inefficiency, and residual informational

frictions.

The influence of information structure on uncertainty

Figure 5 displays the percentage reductions in uncertainty under the different informational

settings for contracts with a fixed time-to-expiration of 12 months. The dark gray regions

show price informativeness measures ∆p
1 and ∆p

2 across contracts, that is the percentage

reduction in valuation, respectively, strategic uncertainty that results from having access

to the consensus price. The lack of uncertainty reduction in the moneyness range from 80

to 110 is to be expected as dealers receive very precise private signal for these contracts.

This mirrors the previously shown estimates of the Kalman gain ks and k̄s which are both

close to 1 (see Figure 3). In the mostly OTC-traded market segments ∆p
1 is higher, which

implies that the consensus price is more informative about θt. Here, the Kalman gains for

the consensus price, kp, are also higher. Table 7 in the Appendix shows similar patterns for

other times-to-expiration. For all contracts under consideration, the reduction in valuation

uncertainty is between 0% for the ATM contracts to 4.36% for the more extreme contracts.

The comparison between ∆p
1 and ∆p

2, that is the left and right panel in Figure 5, shows that

the consensus price signal is much more informative about θ̄t. ∆p
2, the reduction in strategic

uncertainty that results from having access to the consensus price, ranges from 0.02% to

27.33% (see Table 7). The relative larger decrease in strategic uncertainty in comparison

to valuation uncertainty points to the importance of the consensus price for learning about

strategic aspects of the market. This is also echoed in the difference between kp and k̄p.

Given the scarcity of shared trade data in market segments that are dominated by OTC

trading, the ability of the consensus price to significantly reduce strategic uncertainty is

both intuitive and important.

The light gray areas in Figure 5 display price inefficiency measures ∆θ
1 and ∆θ

2, that is

31



the additional percentage reductions in valuation, respectively, strategic uncertainty that

could be achieved by moving from the current consensus price to a consensus price that

perfectly reveals θt−1. Knowing the previous period’s option value eliminates two sources

of uncertainty. First, it eliminates the uncertainty that originates from the additive noise

component of the consensus price, εt. Second, dealers no longer have to take into account

the dispersion in prior expectations across dealers. With a perfect consensus price, they all

start from a common prior before observing their new private signals. In the top and bottom

panel of Figure 5, the lack of uncertainty reduction in the moneyness range from 80 to 110

is mainly due to the high precision of private signals, as was the case for ∆p
1 and ∆p

2. The

signal-to-noise ratio σu/ση puts an upper bound on the weight the consensus price can receive

when updating expectations. The consensus price can at most reveal the past value, while

the private signal is a signal about the current value. This limits the potential impact of

a fully efficient price on valuation uncertainty. For contracts with intermediate moneyness,

little weight is put on prior expectations, thus limiting the potential of a fully efficient price

to reduce uncertainty by providing a common prior. For contracts with extreme moneyness,

the relative imprecision of the private signal shifts weight towards the consensus price and

the prior. This explains the up to 33.46% drop in valuation uncertainty and 62.69% drop in

strategic uncertainty for the deep OTM call options, as seen in Table 7 in the Appendix. A

focal point, such as the commonly observed consensus price, helps to reduce dispersion in

priors among dealers. It thereby lowers strategic uncertainty and fosters a common under-

standing of market conditions.

The white areas in the figures show the residual informational frictions ∆R
1 and ∆R

2 , that

is the potential percentage reduction in valuation, respectively, strategic uncertainty that

is outside of the scope of this consensus pricing mechanism. The reduced size of this area

for more extreme contracts illustrates the importance of public information in the opaque

parts of the market, especially in providing information about other dealers’ valuations.

For contracts with moneyness between 80 and 110, informational frictions that could not

be remedied by a perfectly efficient consensus pricing mechanism dominate. Reducing the

remaining uncertainty would require changing the design parameters of the consensus pricing

service. Increasing the frequency of the consensus service, for example, can be thought of

as lowering the variance of the fundamental shocks, σ2
u, in our model. However, given the
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Figure 5: These two figures present the percentage reductions in valuation and strategic uncertainty under
different informational settings. The left figure shows the percentage reduction in valuation uncertainty (y-
axis) and the right figure shows the percentage reductions in strategic uncertainty (y-axis) by moneyness
(x-axis) for the option contracts with a time-to-expiration of 12 months. In the base case setting,
dealers only observe private signals. This is indicated by the lower horizontal axis. The dark grey area is
the percentage reduction in uncertainty due to observing the consensus price, i.e., ∆p

i in (13). The light grey
area indicates the further reduction in uncertainty due to observing the past state, i.e., ∆θ

i . The white area
is the further reduction in uncertainty that can be achieved from an information structure that eliminates
informational frictions, i.e., ∆R

i . The sample period is from December 2002 to February 2015.

labour-intensive nature of the consensus pricing process, running a more frequent service is

costly. It appears that the marginal cost of increasing the frequency of the service exceeds

the dealers’ willingness to pay for a marginal reduction in uncertainty.

6 Conclusion

In this paper we provide empirical evidence on the ability of consensus prices to reduce val-

uation and strategic uncertainty among major dealer banks in the over-the-counter options

market. This evidence is based on a structural model of learning from prices. The estima-

tion uses a proprietary panel of price estimates that large broker-dealers have provided to

a consensus pricing service for OTC derivatives. The structural model allows us to address

three questions. First, how uncertain are dealer banks that participate in the OTC deriva-

tives market about the values of S&P 500 index options? Here we consider two dimensions

of uncertainty: a dealer bank’s uncertainty about fundamental values and its uncertainty

about its relative position with respect to other market participants’ valuations. Second,

does the consensus price feedback help to reduce market participants’ uncertainty? Last,

how well does the consensus pricing mechanism aggregate dispersed information?
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We find that both valuation and strategic valuation uncertainty vary substantially across the

different market segments. Dealers are more uncertain about option valuations for contracts

that are predominately or exclusively traded in the OTC segment of the options market. For

these contracts, they are also less certain about their relative position in relation to other

market participants. Dealer banks do not appear to rely heavily on the consensus price

feedback to reduce valuation uncertainty. The consensus price feedback is found to be most

important for reducing strategic uncertainty, and particularly so for options with extreme

contract terms. This result is consistent with the scarcity of shared valuation information for

such extreme contracts. It stresses the importance of publicly observable valuation data, such

as benchmarks, to establish a shared understanding of market conditions in OTC markets.

Such a shared understanding can be particularly valuable during episodes of market stress

where high levels of strategic uncertainty can cause financial markets to freeze.
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7 Appendix

7.1 Solution algorithm

Here, we show how to solve the consensus pricing problem using a solution algorithm devel-

oped in Nimark (2017). We adopt the following standard notation for higher-order expecta-

tions, defining recursively

θ
(0)
t = θt,

θ
(k+1)
i,t = E

(
θ

(k)
t |Ωi,t

)
and θ

(k+1)
t =

∫ 1

0

θ
(k+1)
i,t di for all k ≥ 0.

We denote institution i ’s hierarchy of expectations up to order k by

θ
(1:k)
i,t =

(
θ

(1)
i,t , ..., θ

(k)
i,t

)T
and for the hierarchy of average expectations up to order k, including the fundamental value

θ
(0)
t as first element,

θ
(0:k)
t =

(
θ

(0)
t , θ

(1)
t , ..., θ

(k)
t

)T
.

The solution procedure proceeds recursively. It starts with a fixed order of expectations

k ≥ 0 and postulates that the dynamics of average expectations θ
(0:k)
t are given by the

VAR(1)

θ
(0:k)
t = Mk θ

(0:k)
t−1 +Nk wt, (14)

with wt = (ut, εt−1)T and θ
(n)
t = θ

(k)
t for all n ≥ k.

Institution i’s signal can be expressed in terms of current and past average expectations,

θ
(0:k)
t and θ

(0:k)
t−1 , and the period t shocks wt and ηi,t. The private signal can be written as

si,t = eT1 θ
(0:k)
t + ση ηi,t,

where ej denotes a column vector of conformable length with a 1 in position j, all other
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elements being 0. Similarly, we can express the consensus price pt as

pt = θ
(1)
t + σε εt = eT2 θ

(0:k)
t + σε εt.

Denote the vector of signals by zi,t = (si,t, pt−1)T. We can now express the signals in terms

of current and past average expectations and shocks,

zi,t = Dk,1 θ
(0:k)
t +Dk,2 θ

(0:k)
t−1 +Rw wt +Rη ηi,t, (15)

where

Dk,1 =

[
eT1

0T
k+1

]
, Dk,2 =

[
0T
k+1

eT2

]
, Rη =

[
ση

0

]
and Rw =

[
0 0

0 σε

]
.

We thus obtain a state space representation of the system from the perspective of institution

i. Equation (14) describes the dynamics of the latent state variable θ
(0:k)
t ; Equation (15)

is the observation equation that provides the link between the state and i’s signals. Using

a Kalman filter that allows for lagged state variables (Nimark 2015) allows us to express

institution i’s expectations conditional on the information contained in Ωi,t as

θ
(1:k+1)
i,t = Mk θ

(1:k+1)
i,t−1 +Kk

[
zi,t −D1,kMk θ

(1:k+1)
i,t−1 −D2,k θ

(1:k+1)
i,t−1

]
, (16)

where Kk is the (stationary) Kalman gain. Substituting out the signal vector in terms of

state variables and shocks, this can equivalently be written as

θ
(1:k+1)
i,t = [Mk −Kk(D1,kMk +D2,k)] θ

(1:k+1)
i,t−1

+Kk(D1,kMk +D2,k)θ
(0:k)
t−1 +Kk(D1,kNk +Rw)wt +KkRη ηi,t.

Averaging this expression across all submitters, assuming that by a law of large numbers∫ 1

0
ηi,t di = 0, average expectations are then given by

θ
(1:k+1)
t = [Mk −Kk(D1,kMk +D2,k)] θ

(1:k+1)
t−1

+Kk(D1,kMk +D2,k)θ
(0:k)
t−1 +Kk(D1,kNk +Rw)wt.
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Combined with the fact that θ
(0)
t = ρ θ

(0)
t−1 + σu ut, we now obtain a new law of motion for

the state,

θ
(0:k+1)
t = Mk+1 θ

(0:k+1)
t−1 +Nk+1wt,

with

Mk+1 =

[
ρ eT1 0

Kk(D1,kMk +D2,k) 0k×1

]
+

[
0 01×k

0k×1 Mk −Kk(D1,kMk +D2,k)

]
(17)

and

Nk+1 =

[
σu e

T
1

Kk(D1,kNk +Rw)

]
. (18)

Note, however, that now the state space has increased by one dimension from k+ 1 to k+ 2.

This is a consequence of the well-known infinite regress problem when filtering endogenous

signals. When filtering signals based on average expectations of order k, institutions have

to form beliefs about average expectations of order k. But this implies that equilibrium

dynamics are influenced by average expectations of order k + 1, and so on for all orders

k ≥ 0.

In practice, the solution algorithm works as follows. We initialize the iteration at k = 0 with

M0 = ρ and N0 = σu, which implies that θ
(1)
t = θ

(0)
t for all t. Consequently, the consensus

price of the first iteration is given by22

p
[1]
t = θ

(0)
t + σε εt.

This yields a Kalman gain K0 (here a two-dimensional vector) which can then be used to

obtain M1 and N1 via equations (17) and (18) and so on until either convergence of the

process p
[n]
t has been achieved according to a prespecified convergence criteria after n steps

or a upper bound on steps has been reached. The highest-order belief that is not trivially

defined by lower-order beliefs is then of order n.

22Superscripts in square brackets denote iterations of the algorithm.
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7.2 Kalman Filter for Estimation

For a given contract, that is, a given time-to-expiration, moneyness, and option type (put

or call), our data consists of two time series. Let S be the total number of institutions

that have submitted to Totem over the course of our sample and let ιt ⊂ {1, 2, .., S} be the

set of institutions active in t.23 Our sample of submissions is then given by (pt)
T
t=1, where

pt = (pj,t)j∈ιt is a |ιt|-dimensional vector consisting of the individual period t consensus price

submissions. We assume that consensus price submissions are institution i’s conditional

expectation of θt,

pi,t = θi,t. (19)

Following our model, we assume that the consensus price of period t, pt, equals the average

expectation of period t plus aggregate noise, that is,

pt = θ̄t + σε εt.

Our data set for a given contract, (yt)
T
t=1, then consists of the time-series of institutions’

price submissions for this contract and the corresponding consensus price of the previous

period, i.e. yt = (pt−1 ,pt)
T.24

To estimate the model, we fix the maximum order of beliefs at k̄ = 4.25 Average expec-

tations then evolve according to (5), namely,

xt = Mk̄ xt−1 +Nk̄ vt,

where xt is the k̄ + 1 dimensional state vector, Mk̄ and Nk̄ are functions of the parameters

φ defined recursively (see Appendix 7.1 for solution algorithm) and vt = (ut , εt−1)T ∼
N(02, I2).26 The dynamics of institution i’s conditional expectations xi,t can be expressed in

23If an institution does not submit a price in t, we treat this as a missing value. However, it is assumed
that this institution received both the consensus price and the private signal about the fundamental in that
period.

24This timing convention of lagging the consensus price simplifies the expression for the likelihood function
in terms of yt.

25Allowing k̄ greater than 4 does not change the estimates noticeably.
26We use 0n×m to denote a n ×m matrix of zeros, 1n is a (column) vector containing n ones, and In is

an n-dimensional identity matrix.
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terms of deviations from average expectations, x̂i,t ≡ xi,t(1 : k̄)− xt(2 : (k̄ + 1)),27

x̂i,t = Qk̄ x̂i,t−1 + Vk̄ ηi,t,

where

Qk̄ =
[
Mk̄ −Kk̄(D1,k̄Mk̄ +D2,k̄)

]
and Vk̄ = Kk̄ Rη.

Given the linearity of the above system and the assumed normality of shocks, the likelihood

function for the observed data (y)Tt=1 with yt = (pt−1 ,pt)
T can be derived using the Kalman

filter. We define αt = (xTt , x
T
1,t , ..., x

T
S,t , εt−1)T to be the state of the system in t.

The transition equation of the system in state space form is then given by

αt = Tαt−1 +R εt,

where

T =

 Mk̄ , 0k̄+1×Sk̄+1

0S k̄×k̄+1 , IS ⊗Qk̄ , 0S k̄×1

02×k̄+1+Sk̄+1

 , R =

 Nk̄ , 0k̄+1×S

0Sk̄×2 , IS ⊗ ση Vk̄
I2 , 02×S


and εt = (ut , εt−1 , η1,t , ..., ηS,t)

T ∼ N (02+S, I2+S).

We now derive the observation equation for the system. First note that the consensus price

pt−1 can be expressed in terms of the past state vector αt−1 as

pt−1 = θ̄t−1 + σε εt−1 = eT2 αt−1 + σε e
T
last αt.

Next, note that we can write institution i’s submission pi,t as

pi,t = θi,t = eT2 αt + eTn αt,

where n corresponds to the position of the first element of xi,t in αt. It follows that our

observations of the system, yt, can be expressed in terms of the latent state of the system,

27x(j : k) denotes a subvector of x containing elements j to k.
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namely

yt = Z1,t αt + Z2,t αt−1.

Z1,t, and Z2,t are matrices that depend on the parameters of the model. To derive these

matrices, we start by defining an auxiliary matrix Jt that allows us to deal with missing

submissions by some institutions in period t. Recall that ιt ⊂ {1, 2, .., S} is the set of

institutions submitting in t. Let ιk,t designate the k-th element of the index ιt. Jt is a

(|ιt| × S) matrix whose k-th row has a 1 in position ιk,t and zeros otherwise. We have

Z1,t = Jt Z1 and Z2,t = Jt Z2, where

Z1 =



01×1+k̄+Sk̄ , σε

0 , 1 , eT1

0 , 1 , eT
k̄+1

...

0 , 1 , eT
(S−1)k̄+1


, and Z2 =


0, 1, 01×(k̄−2)+Sk̄+1

01×1+k̄+Sk̄+1
...

01×1+k̄+Sk̄+1

 .

Given a prior for the state of the system at t = 1, α1 ∼ N(a1, P1), we can now apply the

usual Kalman filter recursion to derive the likelihood function for our data (yt)
T
t=1 given the

parameter vector φ denoted L
(
(yt)

T
t=1 | φ

)
.

7.3 Proof of identification

Strategy of proof The proof of identification proceeds in two steps. First, we establish

identification for the model under the assumption that submitting institutions take the

consensus price to be an exogenous signal of the current state, i.e. pt = θt + εt where εt ∼
N(0, σ2

ε). This is the model of the first step in Nimark (2017)’s solution algorithm. Second,

once we have established identification of the first-step model, we proceed by induction. In

particular, we argue that if the model is identified at step n of the algorithm, it is also

identified at step n + 1. This then establishes identification of the model at all steps of the

algorithm.
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A. Identification with exogenous consensus price signal

If submitters assume that the consensus price is an exogenous signal of the (past) state, then

individual submitters’ first-order beliefs are updated according to

θi,t = ρ θi,t−1 + (k11 k12)

(
θt + ηi,t − ρ θi,t−1

θt−1 + εt−1 − θi,t−1

)
,

where ηi,t ∼ N(0, σ2
η). We can write this as

θi,t = (1− k)ρ θi,t−1 + k ρ θt−1 + k11 ut + k12 εt−1 + k11 ηi,t, (20)

where the Kalman gains k11 and k12 are given by

k11 =
ζ + ρ2 k

ζ + ρ2 + ψ/(1− ψ)
and k12 = ρ(k − k11) with

k =
1

2
+

1

2ρ2

{[
(1− ρ)2 + ξ

] 1
2
[
(1 + ρ)2 + ξ

] 1
2 − (1 + ξ)

}
,

ξ =
ζ

ψ
, ψ =

σ2
η

σ2
ε + σ2

η

and ζ =
σ2
u

σ2
ε

.

The average first-order belief is then

θ̄t = (1− k)ρ θ̄t−1 + k ρ θt−1 + k11 ut + k12 εt−1,

with corresponding (step 2) consensus price process

pt = θ̄t + εt.

This implies the following dynamics for the consensus price,

pt = (1− k)ρ pt−1 + k ρ θt−1 + k11 ut + (k12 − (1− k)ρ)εt−1 + εt. (21)

Observed data We assume that our observed data consists of a panel of individual first-

order beliefs for S submitting institutions {{θi,t}Si=1}Tt=1 that evolve according to (20), and
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the corresponding time-series of consensus prices {pt}Tt=1 is generated by the process specified

in (21).

We now show how the distribution of the above data identifies the model parameters of

interest, namely {ρ, σ2
ε , σ

2
η, σ

2
u}.

1. Deviations of the consensus price from average expectations identify σ2
ε .

We obtain estimates for the error εt from the difference between the current consensus price

and the current mean across submissions,

εt = pt − θ̄t.

We can thus identify σ2
ε from the time-series variance of the estimated errors.

2. Individual deviations from average expectations identify (1− k)ρ.

Individual deviations from the consensus, θ̂i,t = θi,t − θ̄t are given by

θ̂i,t = (1− k)ρ θ̂i,t−1 + k11 ηi,t.

Individual deviations follow an AR(1) process. Deviations from consensus mean-revert more

quickly if submitters put less weight on past information (higher k), or if the fundamental

value process is less persistent (low ρ). We can therefore identify (1 − k)ρ from the auto-

covariances of individual deviations from the current mean submission.

3. Persistence in consensus price updates identifies ρ and hence k via (1− k)ρ.

Having identified (1− k)ρ we can obtain ωt = pt − (1− k)ρ pt−1 from our data, where

ωt = k11 ut + k ρ

(
ut−1

1− ρL

)
+ (k12 − (1− k)ρ)εt−1 + εt.

ωt is a noisy measure of the news about the fundamental value submitters receive in period

t. By subtracting (1 − k)ρ pt−1 from pt it “eliminates” their prior beliefs. For sufficiently

long lags, ωt’s auto-correlation exclusively comes from its dependence on the fundamental

process and not the aggregate noise, εt. Its auto-covariances thus allow us to identify the
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persistence in the process of θt. In particular, we can see that the auto-covariances of ωt

have to satisfy

Cov(ωt, ωt−3) = ρCov(ωt, ωt−2).

The ratio of these auto-covariances thus identify ρ,

ρ = Cov(ωt, ωt−3)/Cov(ωt, ωt−2),

which together with (1−k)ρ then allow us to identify 1−k, i.e. the persistence in individual

expectations due to informational frictions.

4. The weight submitters put on the consensus price when updating expectations identifies

σ2
η and hence σ2

u via k.

k determines how much weight submitters put on new information as opposed to their priors.

It is given by

k =
1

2
+

1

2ρ2

{[
(1− ρ)2 + ξ

] 1
2
[
(1 + ρ)2 + ξ

] 1
2 − (1 + ξ)

}
,

where ξ =
ζ

ψ
with ψ =

σ2
η

σ2
ε + σ2

η

and ζ =
σ2
u

σ2
ε

.

It is a function of ξ, which is a ratio of the variance of the shocks to the fundamental

value to the variance of the signal noises and can thus be seen as a measure of the sig-

nal to noise ratio. k is monotonically increasing in ξ; a higher signal to noise ratio implies

a higher weight on current signals. Hence, having already identified k, we can also identify ξ.

In turn, the weights submitters put on the private signal and the consensus price can be

expressed in terms of k, ξ, and ψ, namely

k11 =
ξ ψ + ρ2 k

ξ ψ + ρ2 + ψ/(1− ψ)
and k12 = ρ(k − k11).

It can be shown that, for a given k, the weight on the private signal, k11, is monotonically

decreasing and the weight on the consensus price, k12, monotonically increasing in ψ for

ψ ∈ (0, 1); a relatively more noisy private signal will lead submitters to shift weight from
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the private signal to the consensus price (given k). As we have already identified k and ξ,

knowing either k11 or k12 will allow us to identify ψ. Given ψ we can then back out σ2
η and

ζ, which yields σ2
u.

We now proceed to show identification of k12, which by the previous argument establishes

identification of the model. To do so, we return to the individual expectation updating

equation,

θi,t = (1− k)ρ θi,t−1 + k11 ρ θt−1 + k12 pt−1 + k11 ηi,t + k11 ut.

We also have

θi,t−1 = (1− k)ρ θi,t−2 + k11 θt−1 + k12 pt−2 + k11 ηi,t−1.

Multiplying the latter expression by ρ and subtracting from the former eliminates the unob-

servable θt−1. We obtain an expression in terms of observables and shocks,

θi,t − ρ θi,t−1 = (1− k)ρ(θi,t−1 − ρ θi,t−2) + k12 (pt−1 − ρ pt−2) + k11(ηi,t − ρ ηi,t−1) + k11 ut.

Note that we have already identified (1− k)ρ. Define

yi,t = θi,t − ρ θi,t−1 − (1− k)ρ(θi,t−1 − ρ θi,t−2).

We can then identify the coefficient k12 from the covariance of yi,t and pt−1 − ρ pt−2 noting

that

yi,t = k12 (pt−1 − ρ pt−2) + k11(ηi,t − ρ ηi,t−1) + k11 ut.

This is possible as pt−1 is a signal based on period t − 1 information. It is not correlated

with the shock ut. Furthermore, the idiosyncratic noise terms ηi,t and ηi,t−1 are uncorrelated

with the consensus price process by construction.

B. Establishing identification by induction

Suppose we have established identification of the model parameters by our observed data for

step n of the algorithm. That is, any two distinct sets of parameters φ1 and φ2 imply distinct

distributions of the observable data. In particular, the step n consensus price process that

submitters will assume in step n + 1 differs across the two parameter sets. This necessarily
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implies that the distribution of individual expectations will differ across the two parameter

sets in step n + 1. This then establishes identification of the model at step n + 1 of the

algorithm.

7.4 Covariance matrices for counterfactuals

Consensus price perfectly reveals past state

If the consensus price perfectly aggregates dispersed information, we have

pt = θt.

In this case all submitters start period t with a common prior about θt, namely ρ θt−1, and

there is no higher-order uncertainty before receiving new signals. This is because every sub-

mitter knows that every submitter knows (and so on ...) that the average expected value of

θt before receiving period t signals is ρ θt−1.

Submitter i’s expectations about the fundamental given signal si,t = θt+ηi,t can be obtained

by the standard updating formula as state θt and signal si,t given θt−1 are jointly normally

distributed:

Ei,t (θt) = θi,t = ρ θt−1 + k1 (si,t − ρ θt−1) = ρ θt−1 + k1(ut + ηi,t) ,

where k1 is the Kalman gain

k1 =
σ2
u

σ2
u + σ2

η

.

It follows that the average expectation is

θ̄t = ρ θt−1 + k1 ut.

Now define the random vector

Xt =
[
θt − ρ θt−1 , θ̄t − ρ θt−1

]
= [ut , k1 ut]
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and

yi,t = si,t − ρ θt−1 = ut + ηi,t.

Xt and yi,t are jointly normally distributed. Thus, the covariance of Xt given yi,t is

V ar (Xt|yi,t) = Σxx − Σxy

(
σ2
y

)−1
ΣT
xy,

where Σxx is the variance of Xt and Σxy is the covariance of Xt and yi,t, namely,

Σxx =

[
σ2
u k1σ

2
u

k1σ
2
u k2

1 σ
2
u,

]
, Σxy =

[
σ2
u , k1 σ

2
u

]T
.

As ρ θt−1 is known in t, V ar((θt, θ̄t)
T|Ωi,t) = V ar((θt, θ̄t)

T|θt−1, yi,t) = V ar (Xt|yi,t). It follows

that

V ar((θt, θ̄t)
T|Ωi,t) =

 σ2
u σ

2
η

σ2
u+σ2

η

σ4
uσ

2
η

(σ2
u+σ2

η)2

σ4
uσ

2
η

(σ2
u+σ2

η)2
σ6
uσ

2
η

(σ2
u+σ2

η)3

 .
No consensus price feedback

Without consensus price feedback, the stationary expectation dynamics of submitter i are

given by

θi,t = ρ θi,t−1 + k1 (si,t − ρ θi,t−1) ,

where k1 is the stationary Kalman gain. k1 is the solution to the system of two equations in

two unknowns, k1 and σ2,

k1 =
σ2

σ2 + σ2
η

, σ2 = ρ2(1− k1)σ2 + σ2
u.

The average stationary expectation then evolves according to

θ̄t = (1− k1)ρ θ̄t−1 + k1ρ θt−1 + k1 ut.
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We can write the dynamics for (θt, θ̄t)
T in state space form, with transition equation(

θt

θ̄t

)
=

[
ρ 0

k1ρ (1− k1)ρ

](
θt−1

θ̄t−1

)
+

[
1

k1

]
ut

and measurement equation

zi,t = (1 , 0)

(
θt

θ̄t

)
+ ηi,t.

The stationary covariance matrix for the state given the history of signals up to t, V ar((θt, θ̄t)
T|{si,t−j}∞j=0)

can now be derived with a standard Kalman filter.
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Table 3: Model parameter estimates φ = {ρ, σu, σε, ση}
60 80 90 95 100 105 110 120 150 200

6 0.950 0.911 0.930 0.923 0.920 0.945 0.949 0.956 0.950 ·
(0.019) (0.031) (0.028) (0.026) (0.028) (0.030) (0.022) (0.015) (0.021) ·

12 0.967 0.930 0.939 0.949 0.941 0.930 0.949 0.967 0.969 ·
(0.015) (0.024) (0.027) (0.028) (0.022) (0.025) (0.022) (0.013) (0.017) ·

24 0.935 0.940 0.943 0.956 0.947 0.938 0.945 0.962 0.970 0.971
(0.025) (0.021) (0.020) (0.026) (0.028) (0.024) (0.023) (0.020) (0.015) (0.017)

36 0.939 0.943 0.941 0.969 0.952 0.932 0.958 0.948 0.963 0.946
(0.022) (0.026) (0.023) (0.026) (0.023) (0.021) (0.025) (0.021) (0.017) (0.021)

48 0.935 0.949 0.947 0.938 0.944 0.942 0.953 0.945 0.959 0.943
(0.022) (0.025) (0.022) (0.021) (0.024) (0.022) (0.026) (0.020) (0.017) (0.022)

60 0.982 0.956 0.951 0.941 0.948 0.941 0.945 0.956 0.963 0.937
(0.012) (0.028) (0.022) (0.021) (0.021) (0.025) (0.024) (0.027) (0.016) (0.026)

84 0.968 0.947 0.949 0.947 0.939 0.945 0.940 0.945 0.941 0.954
(0.011) (0.025) (0.026) (0.023) (0.019) (0.019) (0.022) (0.024) (0.023) (0.017)

(a) Mean and standard deviation ρ

60 80 90 95 100 105 110 120 150 200

6 0.079 0.092 0.099 0.106 0.116 0.120 0.115 0.111 0.166 ·
(0.001) (0.005) (0.005) (0.006) (0.006) (0.007) (0.006) (0.002) (0.005) ·

12 0.047 0.076 0.082 0.086 0.091 0.095 0.095 0.073 0.135 ·
(0.001) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.002) (0.003) ·

24 0.064 0.065 0.070 0.072 0.075 0.078 0.080 0.073 0.078 0.135
(0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.001) (0.005)

36 0.056 0.059 0.063 0.065 0.067 0.069 0.070 0.068 0.061 0.110
(0.002) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.001) (0.003)

48 0.054 0.056 0.059 0.061 0.062 0.064 0.065 0.065 0.057 0.097
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.002) (0.002)

60 0.033 0.055 0.055 0.057 0.058 0.059 0.060 0.061 0.051 0.089
(0.001) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002)

84 0.033 0.050 0.051 0.052 0.053 0.054 0.055 0.056 0.062 0.058
(0.001) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) (0.001)

(b) Mean and standard deviation σu

60 80 90 95 100 105 110 120 150 200

6 0.121 0.004 0.007 0.009 0.011 0.016 0.021 0.151 0.328 ·
(0.008) (0.000) (0.000) (0.001) (0.001) (0.001) (0.002) (0.010) (0.013) ·

12 0.055 0.004 0.006 0.007 0.009 0.011 0.014 0.036 0.262 ·
(0.004) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.003) (0.016) ·

24 0.002 0.004 0.006 0.007 0.008 0.009 0.010 0.015 0.114 0.270
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.008) (0.016)

36 0.003 0.004 0.005 0.006 0.007 0.008 0.008 0.011 0.054 0.183
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.004) (0.012)

48 0.003 0.004 0.005 0.006 0.006 0.007 0.007 0.009 0.034 0.121
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003) (0.009)

60 0.032 0.002 0.004 0.005 0.005 0.006 0.006 0.007 0.024 0.083
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003) (0.006)

84 0.034 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005 0.069
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.005)

(c) Mean and standard deviation σε

60 80 90 95 100 105 110 120 150 200

6 0.096 0.022 0.015 0.013 0.013 0.018 0.030 0.131 0.380 ·
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003) (0.020) ·

12 0.041 0.014 0.010 0.010 0.010 0.011 0.015 0.036 0.281 ·
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.011) ·

24 0.024 0.012 0.009 0.008 0.008 0.009 0.013 0.018 0.093 0.395
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.023)

36 0.021 0.011 0.009 0.008 0.008 0.009 0.010 0.015 0.049 0.231
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.011)

48 0.022 0.012 0.010 0.009 0.009 0.009 0.011 0.014 0.035 0.155
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.006)

60 0.025 0.012 0.010 0.009 0.009 0.010 0.011 0.014 0.027 0.116
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.004)

84 0.029 0.014 0.011 0.011 0.011 0.011 0.012 0.014 0.023 0.069
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002)

(d) Mean and standard deviation ση

The panels in this table present the means and standard deviations (in parentheses) of the model parameter estimates. Panel (a)
displays estimates of the persistence ρ of the AR1 process for the fundamental value. Panel (b) displays estimates of the standard
deviation σu of the shock to the fundamental. Panel (c) displays the estimates of the standard deviation σε of the noise in the
consensus price. Panel (d) displays the estimates of the standard deviation of the noise ση in private signal. Estimates are obtained
using MCMC methods assuming diffuse priors for all parameters. The first row and first column of each panel give moneyness and
time-to-expiration, respectively, of the option contracts under consideration. The standard deviation of the posterior distribution of
the parameter is given in parenthesis below its mean (0.000 signifies standard deviations below 0.0005). The sample period of the
data is December 2002 to February 2015.
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Table 4: Kalman gains for θi,t and θ̄i,t
60 80 90 95 100 105 110 120 150 200

6 0.522 0.945 0.977 0.984 0.988 0.978 0.937 0.531 0.309 ·
(0.012) (0.006) (0.003) (0.002) (0.001) (0.002) (0.007) (0.011) (0.015) ·

12 0.649 0.966 0.984 0.987 0.989 0.986 0.976 0.825 0.344 ·
(0.010) (0.004) (0.002) (0.001) (0.001) (0.002) (0.003) (0.010) (0.013) ·

24 0.875 0.967 0.983 0.987 0.988 0.986 0.975 0.945 0.531 0.248
(0.013) (0.004) (0.002) (0.002) (0.001) (0.002) (0.003) (0.006) (0.011) (0.014)

36 0.878 0.966 0.981 0.984 0.986 0.983 0.978 0.955 0.672 0.330
(0.012) (0.004) (0.002) (0.002) (0.002) (0.002) (0.002) (0.005) (0.011) (0.015)

48 0.860 0.957 0.974 0.979 0.981 0.978 0.973 0.954 0.751 0.414
(0.014) (0.005) (0.003) (0.002) (0.002) (0.002) (0.003) (0.005) (0.012) (0.015)

60 0.689 0.955 0.967 0.973 0.975 0.974 0.968 0.950 0.797 0.480
(0.010) (0.005) (0.004) (0.003) (0.003) (0.003) (0.004) (0.006) (0.012) (0.016)

84 0.640 0.930 0.953 0.958 0.959 0.958 0.954 0.939 0.882 0.529
(0.010) (0.008) (0.005) (0.005) (0.005) (0.011) (0.005) (0.007) (0.012) (0.013)

(a) ks

60 80 90 95 100 105 110 120 150 200

6 0.081 0.051 0.018 0.010 0.006 0.012 0.040 0.096 0.116 ·
(0.010) (0.006) (0.002) (0.001) (0.001) (0.001) (0.005) (0.011) (0.009) ·

12 0.071 0.030 0.012 0.008 0.005 0.007 0.012 0.072 0.114 ·
(0.009) (0.004) (0.001) (0.001) (0.001) (0.001) (0.002) (0.008) (0.013) ·

24 0.132 0.028 0.012 0.008 0.006 0.007 0.014 0.030 0.089 0.152
(0.015) (0.003) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003) (0.011) (0.017)

36 0.126 0.029 0.013 0.010 0.008 0.009 0.013 0.028 0.096 0.139
(0.015) (0.003) (0.002) (0.001) (0.001) (0.001) (0.002) (0.003) (0.011) (0.016)

48 0.147 0.037 0.019 0.014 0.012 0.014 0.017 0.031 0.102 0.160
(0.017) (0.004) (0.002) (0.002) (0.002) (0.002) (0.002) (0.004) (0.013) (0.020)

60 0.079 0.045 0.026 0.020 0.018 0.019 0.023 0.038 0.099 0.190
(0.010) (0.005) (0.003) (0.002) (0.002) (0.002) (0.003) (0.005) (0.013) (0.022)

84 0.093 0.067 0.042 0.037 0.035 0.036 0.039 0.054 0.117 0.117
(0.012) (0.008) (0.005) (0.004) (0.004) (0.013) (0.005) (0.006) (0.014) (0.015)

(b) kp

60 80 90 95 100 105 110 120 150 200

6 0.318 0.893 0.955 0.969 0.976 0.957 0.878 0.324 0.146 ·
(0.013) (0.012) (0.005) (0.003) (0.003) (0.005) (0.012) (0.012) (0.012) ·

12 0.454 0.933 0.968 0.975 0.978 0.971 0.953 0.688 0.172 ·
(0.013) (0.007) (0.004) (0.003) (0.002) (0.003) (0.005) (0.016) (0.011) ·

24 0.766 0.936 0.966 0.973 0.977 0.972 0.951 0.894 0.327 0.110
(0.022) (0.007) (0.004) (0.003) (0.003) (0.003) (0.005) (0.011) (0.012) (0.009)

36 0.771 0.932 0.962 0.969 0.972 0.967 0.957 0.912 0.475 0.157
(0.022) (0.007) (0.004) (0.003) (0.003) (0.004) (0.005) (0.009) (0.015) (0.012)

48 0.740 0.916 0.949 0.958 0.961 0.957 0.948 0.910 0.575 0.213
(0.024) (0.009) (0.006) (0.005) (0.004) (0.005) (0.006) (0.010) (0.018) (0.014)

60 0.501 0.911 0.936 0.948 0.951 0.948 0.938 0.903 0.642 0.262
(0.013) (0.010) (0.007) (0.006) (0.005) (0.006) (0.007) (0.011) (0.019) (0.016)

84 0.439 0.865 0.909 0.918 0.920 0.918 0.911 0.882 0.779 0.318
(0.013) (0.015) (0.010) (0.009) (0.009) (0.019) (0.010) (0.013) (0.022) (0.015)

(c) k̄s

60 80 90 95 100 105 110 120 150 200

6 0.196 0.101 0.038 0.023 0.015 0.028 0.091 0.227 0.271 ·
(0.022) (0.012) (0.004) (0.003) (0.002) (0.003) (0.010) (0.024) (0.018) ·

12 0.173 0.062 0.026 0.018 0.013 0.017 0.029 0.171 0.266 ·
(0.020) (0.007) (0.003) (0.002) (0.002) (0.002) (0.004) (0.017) (0.027) ·

24 0.248 0.059 0.026 0.019 0.015 0.017 0.033 0.072 0.212 0.335
(0.027) (0.007) (0.003) (0.002) (0.002) (0.002) (0.004) (0.008) (0.024) (0.030)

36 0.240 0.061 0.030 0.023 0.019 0.022 0.030 0.065 0.226 0.318
(0.026) (0.007) (0.004) (0.003) (0.002) (0.003) (0.004) (0.007) (0.024) (0.032)

48 0.277 0.077 0.043 0.032 0.028 0.031 0.039 0.070 0.234 0.359
(0.030) (0.009) (0.005) (0.004) (0.003) (0.004) (0.005) (0.008) (0.025) (0.037)

60 0.190 0.088 0.056 0.044 0.040 0.041 0.051 0.083 0.226 0.412
(0.022) (0.011) (0.007) (0.005) (0.005) (0.005) (0.006) (0.010) (0.024) (0.039)

84 0.220 0.133 0.086 0.076 0.072 0.075 0.081 0.110 0.227 0.272
(0.025) (0.016) (0.010) (0.009) (0.008) (0.023) (0.010) (0.013) (0.025) (0.031)

(d) k̄p

This table presents the means and standard deviations (in parantheses) of the weight dealers put on “news” in the private signal and
the consensus price when updating expectations about the fundamental value and the average expectation across dealers.The top
panels display the Kalman gain for private signal (ks; Panel (a)) and the consensus price (kp; Panel (b)) w.r.t. the fundamental value
as given in (10). The bottom panels display the Kalman gains for private signal (k̄s; Panel (c)) and consensus price (k̄p; Panel (d))
w.r.t. the average expectation, as given in (11). The first row and first column of each table give moneyness and time-to-expiration,
respectively, of the options under consideration. The sample period of the data is December 2002 to February 2015.
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Table 5: Weight k on new information and belief correlation ρ12

60 80 90 95 100 105 110 120 150 200

6 0.625 0.998 0.996 0.995 0.995 0.990 0.978 0.649 0.465 ·
(0.012) (0.000) (0.001) (0.001) (0.001) (0.001) (0.003) (0.013) (0.012) ·

12 0.733 0.998 0.996 0.996 0.995 0.993 0.989 0.901 0.490 ·
(0.011) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.010) (0.014) ·

24 0.999 0.997 0.995 0.995 0.995 0.993 0.990 0.976 0.639 0.440
(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.013) (0.017)

36 0.997 0.995 0.995 0.995 0.994 0.993 0.991 0.984 0.781 0.513
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.012) (0.017)

48 0.996 0.995 0.994 0.994 0.993 0.993 0.991 0.986 0.860 0.613
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.013) (0.019)

60 0.778 0.999 0.994 0.994 0.994 0.993 0.992 0.989 0.900 0.703
(0.011) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.015) (0.018)

84 0.747 0.997 0.996 0.996 0.995 0.995 0.994 0.993 0.994 0.671
(0.012) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.016)

(a) k

60 80 90 95 100 105 110 120 150 200

6 0.954 1.000 1.000 1.000 1.000 1.000 1.000 0.958 0.915 ·
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.003) ·

12 0.974 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.922 ·
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003) ·

24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.956 0.909
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.004)

36 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.982 0.925
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.004)

48 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.947
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003)

60 0.981 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.964
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003)

84 0.976 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.962
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003)

(b) ρ12

This table presents means and standard deviations (in parantheses) of k, the Kalman gain as given in (12)
and ρ12, the correlation between θt and θ̄t according to a dealer’s posterior beliefs. 1−k measures how much
weight a dealer puts on their prior when updating expectations about the fundamental value θt. The first
row and first column of each table give moneyness and time-to-expiration, respectively, of the options under
consideration. The sample period of the data is December 2002 to February 2015.
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Table 6: 95% posterior intervals θt and θ̄t

60 80 90 95 100 105 110 120 150 200

6 9.677 2.274 1.300 1.045 0.903 1.133 1.690 5.065 12.845 ·
(0.161) (0.026) (0.014) (0.011) (0.010) (0.012) (0.019) (0.078) (0.391) ·

12 4.052 1.369 0.896 0.772 0.706 0.786 0.943 1.858 8.679 ·
(0.057) (0.015) (0.010) (0.008) (0.007) (0.008) (0.010) (0.024) (0.202) ·

24 2.586 1.122 0.781 0.685 0.640 0.681 0.888 1.117 3.767 11.038
(0.037) (0.012) (0.008) (0.007) (0.007) (0.007) (0.010) (0.013) (0.060) (0.389)

36 2.181 1.042 0.763 0.689 0.655 0.695 0.776 1.024 2.396 7.533
(0.031) (0.012) (0.008) (0.008) (0.007) (0.008) (0.009) (0.012) (0.036) (0.216)

48 2.249 1.113 0.852 0.771 0.734 0.764 0.833 1.037 1.981 5.876
(0.034) (0.013) (0.010) (0.009) (0.008) (0.009) (0.009) (0.012) (0.029) (0.144)

60 2.320 1.144 0.921 0.832 0.799 0.816 0.885 1.068 1.680 5.018
(0.033) (0.013) (0.011) (0.009) (0.009) (0.009) (0.010) (0.013) (0.024) (0.119)

84 2.623 1.343 1.077 1.017 0.993 0.994 1.037 1.182 1.645 3.480
(0.040) (0.018) (0.014) (0.013) (0.012) (0.019) (0.013) (0.015) (0.025) (0.071)

(a) 3.92 · σp11

60 80 90 95 100 105 110 120 150 200

6 6.287 2.148 1.270 1.029 0.892 1.108 1.584 3.282 6.522 ·
(0.087) (0.022) (0.013) (0.011) (0.009) (0.011) (0.017) (0.043) (0.143) ·

12 2.938 1.323 0.882 0.762 0.698 0.775 0.921 1.557 4.725 ·
(0.034) (0.014) (0.009) (0.008) (0.007) (0.008) (0.010) (0.017) (0.093) ·

24 2.262 1.086 0.768 0.676 0.632 0.671 0.867 1.056 2.473 5.114
(0.027) (0.011) (0.008) (0.007) (0.007) (0.007) (0.009) (0.011) (0.034) (0.131)

36 1.914 1.006 0.749 0.679 0.646 0.683 0.759 0.978 1.743 3.857
(0.023) (0.011) (0.008) (0.007) (0.007) (0.007) (0.008) (0.010) (0.021) (0.090)

48 1.934 1.065 0.830 0.755 0.720 0.748 0.811 0.989 1.537 3.240
(0.025) (0.011) (0.009) (0.008) (0.008) (0.008) (0.009) (0.011) (0.019) (0.066)

60 1.733 1.093 0.891 0.810 0.779 0.795 0.857 1.014 1.361 2.894
(0.020) (0.012) (0.010) (0.009) (0.008) (0.009) (0.009) (0.011) (0.017) (0.057)

84 1.866 1.249 1.026 0.974 0.952 0.952 0.990 1.110 1.451 2.219
(0.024) (0.014) (0.012) (0.011) (0.011) (0.023) (0.011) (0.013) (0.018) (0.036)

(b) 3.92 · σp22

This table presents the means and standards deviations (in parentheses) of the 95% posterior intervals, as
implied by a dealer’s posterior beliefs, for the fundamental value, [3.92 · σp11], as given in (9) and for the
average expectation, [3.92 ·σp22]. The lengths of the posterior intervals are given in terms of volatility points.
The first row and first column of each table give moneyness and time-to-expiration, respectively, of the
options under consideration. The sample period of the data is December 2002 to February 2015.
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Table 7: Counterfactual experiments - change in uncertainty
60 80 90 95 100 105 110 120 150 200

6 1.38 0.12 0.02 0.01 0.00∗ 0.01 0.11 1.58 2.91 ·
(0.17) (0.03) (0.00) (0.00) (0.00) (0.00) (0.02) (0.18) (0.29) ·

12 0.93 0.05 0.01 0.00∗ 0.00∗ 0.00∗ 0.01 0.50 2.85 ·
(0.12) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.32) ·

24 0.62 0.04 0.01 0.01 0.00∗ 0.00∗ 0.02 0.07 1.52 4.36
(0.12) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.18) (0.50)

36 0.59 0.04 0.01 0.01 0.01 0.01 0.01 0.06 1.14 3.20
(0.12) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.14) (0.38)

48 0.76 0.07 0.02 0.01 0.01 0.01 0.02 0.06 0.92 3.06
(0.15) (0.02) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.12) (0.36)

60 0.93 0.09 0.04 0.02 0.02 0.02 0.03 0.09 0.76 3.06
(0.12) (0.02) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02) (0.10) (0.34)

84 1.21 0.20 0.09 0.07 0.06 0.07 0.08 0.14 0.53 1.90
(0.15) (0.04) (0.02) (0.02) (0.01) (0.10) (0.02) (0.03) (0.11) (0.24)

(a) Reduction in valuation uncertainty : ∆p
1

60 80 90 95 100 105 110 120 150 200

6 9.65 0.70 0.12 0.05 0.03 0.09 0.77 10.82 19.17 ·
(1.02) (0.16) (0.03) (0.01) (0.01) (0.02) (0.16) (1.08) (1.40) ·

12 6.70 0.28 0.06 0.03 0.02 0.04 0.10 3.63 18.27 ·
(0.75) (0.06) (0.01) (0.01) (0.01) (0.01) (0.02) (0.42) (1.66) ·

24 3.48 0.26 0.06 0.04 0.03 0.03 0.12 0.54 10.37 27.33
(0.66) (0.06) (0.01) (0.01) (0.01) (0.01) (0.03) (0.11) (1.09) (2.33)

36 3.33 0.28 0.08 0.05 0.04 0.05 0.09 0.40 7.98 20.69
(0.63) (0.06) (0.02) (0.01) (0.01) (0.01) (0.02) (0.09) (0.83) (1.93)

48 4.25 0.44 0.15 0.10 0.08 0.10 0.15 0.44 6.50 19.34
(0.79) (0.10) (0.03) (0.02) (0.02) (0.02) (0.03) (0.10) (0.73) (1.84)

60 6.63 0.53 0.25 0.16 0.14 0.15 0.22 0.56 5.29 19.08
(0.75) (0.12) (0.06) (0.04) (0.03) (0.03) (0.05) (0.12) (0.61) (1.70)

84 8.45 1.18 0.53 0.43 0.39 0.44 0.49 0.87 3.08 12.67
(0.93) (0.26) (0.12) (0.10) (0.09) (0.52) (0.11) (0.19) (0.60) (1.35)

(b) Reduction in strategic uncertainty : ∆p
2

60 80 90 95 100 105 110 120 150 200

6 12.02 0.01 0.00∗ 0.00∗ 0.00∗ 0.01 0.07 11.35 27.01 ·
(0.52) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.52) (1.03) ·

12 6.15 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.01 1.02 25.45 ·
(0.35) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.16) (0.84) ·

24 0.01 0.01 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.01 0.07 11.99 33.46
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.52) (1.21)

36 0.02 0.01 0.00∗ 0.00∗ 0.00∗ 0.01 0.01 0.03 4.71 24.14
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.34) (1.00)

48 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.03 2.19 16.80
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.27) (0.82)

60 4.60 0.00∗ 0.01 0.01 0.01 0.01 0.01 0.03 1.24 11.55
(0.33) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.24) (0.74)

84 6.13 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 10.88
(0.39) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.63)

(c) Reduction in valuation uncertainty : ∆θ
1

60 80 90 95 100 105 110 120 150 200

6 41.31 0.02 0.01 0.01 0.01 0.04 0.27 38.80 62.69 ·
(1.43) (0.00) (0.00) (0.00) (0.00) (0.01) (0.07) (1.49) (1.09) ·

12 24.49 0.01 0.01 0.01 0.01 0.02 0.05 4.35 61.23 ·
(1.28) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.74) (1.52) ·

24 0.03 0.02 0.01 0.01 0.01 0.02 0.05 0.27 40.68 62.10
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.07) (1.48) (1.95)

36 0.07 0.03 0.02 0.02 0.02 0.02 0.04 0.13 18.68 57.87
(0.02) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.04) (1.31) (1.75)

48 0.09 0.03 0.03 0.02 0.02 0.03 0.04 0.12 8.94 46.67
(0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (1.16) (1.89)

60 18.72 0.01 0.03 0.02 0.02 0.03 0.04 0.10 5.06 35.14
(1.29) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03) (1.05) (1.94)

84 23.65 0.04 0.03 0.03 0.03 0.03 0.04 0.07 0.13 36.56
(1.41) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.04) (1.82)

(d) Reduction in strategic uncertainty : ∆θ
2

The panels in this table present the counterfactual percentage decreases in valuation and strategic uncertainty. The two top panels
display the reductions in uncertainties when comparing a setting without consensus price to a setting with consensus price. Panel (a)
presents the results for the percentage decrease in valuation uncertainty, ∆p

1 in (13). Panel (b) shows the percentage increase in
strategic uncertainty, ∆p

2. The lower panels shows the counterfactual percentage reductions in valuation and strategic uncertainty
when comparing the current information structure to an information structure with a consensus price that perfectly reveals last
period’s state. Panel (c) shows percentage reduction in valuation uncertainty, ∆θ

1 in (13). Panel (d) shows the percentage
reduction in strategic uncertainty, ∆θ

2. The first row and first column of each table give moneyness and time-to-expiration,
respectively, of the options under consideration. The standard deviations of the posterior distribution of the parameter is given in
parentheses below the means (0.00 signifies standard deviations below 0.005). The sample period is from December 2002 to February
2015.
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8 Internet Appendix

8.1 The value of information in OTC markets

This is a simple one-period model to illustrate the value of the consensus price information

for dealers in the OTC options market. It shows that dealers that use an interdealer market

to share risk are naturally concerned about both fundamental asset values and other dealers’

valuation. A dealer is willing to pay for information that reduces its uncertainty in any of

these two dimensions.

The model

Before entering the market, every dealer i ∈ [0, 1] observes a private signal about the fun-

damental value of an option, given by the random variable θ. She can also pay to receive a

public signal about that value. For now, the exact form of these signals is not important.

The game proceeds in three steps:

1. Dealer i ∈ [0, 1] decides whether to buy the public signal at cost f .

2. After observing signal(s), the dealer enters the market and is matched with a client. A

client is a buyer or seller of one option contract with equal probability. The dealer can

credibly communicate her valuation of the option to the client. The client is willing to

pay (receive) at most ∆ in excess of (below) the dealer’s valuation.

3. After buying or selling the option from the client, dealer i enters the interdealer market.

She is matched with a dealer with opposite option inventory with probability 0 ≤ γ ≤ 1.

If matched, dealers trade at the average expectation of fundamental values among

active dealers denoted by θ̄.28

4. If a dealer has not been matched in the interdealer market (probability 1 − γ) she

hedges the option herself. At expiry, she receives the fundamental value θ but hedging

physically creates a cost of c > 0.

28We do not explicitly model the trading mechanism that would yield this as a market-clearing price of
interdealer market.
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Pricing after entry

Suppose dealer i is matched with a client that wants to buy. The dealer charges a price ai to

the client. If the dealer is matched in the interdealer market, her profit is ai − θ̄. Otherwise

her profit is ai−θ− c. We assume that the dealer minimizes a loss function that is quadratic

in losses.29 The pricing problem is then

Lsi = min
a

Ei
{
γ(a− θ̄ − π)2 + (1− γ)(a− θ − c− π)2

}
,

where the expectation is taken over dealer i’s information set when she is interacting with

the client, that is after entry and having observed signals, but before entering the interdealer

market. The first-order condition for a yields the optimal price,

a∗i = π + γ Ei θ̄ + (1− γ)Ei (θ + c).

We assume that dealer i can credibly communicate the “fair value” of the option, namely

γ Ei θ̄ + (1 − γ)Ei (θ + c), to her client. For the client to buy, we further assume that the

markup in the optimal price is smaller than the client’s maximal willingness to pay, that is

π ≤ ∆.

Substituting a∗i back into the loss function we find

Lsi = γ Ei
(
θ̄ − θ̄i

)2
+ (1− γ)Ei (θ − θi)2 + γ(1− γ)(δi + c)2,

where δi = θi − θ̄i.

The case for a dealer buying from a client at price b is symmetric with loss function

Lbi = min
b

Ei
{
γ(θ̄ − b− π)2 + (1− γ)(θ − b− c− π)2

}
.

It yields a nearly identical loss function to the case of buying from a client, namely,

Lbi = γ Ei
(
θ̄ − θ̄i

)2
+ (1− γ)Ei (θ − θi)2 + γ(1− γ)(δi − c)2.

29This captures the idea that dealers’ institutions prefer smooth profits with target level π.
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Participation decision

The ex-ante expected loss of dealer i with signals si is

− E
(

1

2
Lsi +

1

2
Lbi | si

)
= −γ Var(θ̄ | si)− (1− γ)Var(θ | si)

− γ(1− γ)E( δ2
i | si)− γ(1− γ) c2.

The dealer buys the public signal if the reduction in expected loss exceeds the price of the

signal, which is f .

The public signal is valued as it allows for better pricing decisions. Its ability to reduce

strategic uncertainty is valued as it helps to predict prices in the interdealer market.

8.2 IHS Markit’s Totem submission process

IHS Markit Client

Spreadsheet
Valuation +

Parameters

Individual

Submissions

Create Consensus Client Consensus

IHS Markit Cleaning

Figure 6: Diagram – Submission process

Figure 6 depicts a diagram of the submission process to IHS Markit’s Totem service for plain
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vanilla index options.30 On the last trading day of the month, Totem issues a spreadsheet to

the n dealers that participate in the service. Dealers have to submit estimates for the mid

price, defined as the average of bid price and offer price, of a range of put options with a mon-

eyness between 80 and 100 and a range of call options with a moneyness ranging from 100 to

120 with a time-to-expiration of 6 months. Dealers that want to submit prices for different

contracts are required to submit to all the available strike price and time-to-expiration com-

binations that lie in between the required contracts and the additionally demanded contracts.

We denote submitter i’s estimate for the mid-price of an out-of-the-money (OTM) put with

moneyness K, defined as the strike price of the option divided by the spot price of the

underlying asset times 100, and time-to-expiration T (in days) by P i (p,K, T ) and the mid-

price estimate for an OTM call option with the same moneyness and time-to-expiration by

P i (c,K, T ). Submitter i also needs to submit the following input in addition to the mid-price

estimate:

• the discount factor βi (T ),

• the reference level Ri(T ), that is the price of a futures contract with maturity date

closest to the valuation date,

• and the implied spot level Si (K,T ), that is the implied level of the underlying index

of the futures contract.

Submitters are provided with precise instructions for the timing of the valuation and the

reference level that is to be used. To address any issues which might still arise with respect

to valuation timing and the effect it could have on the comparability of prices across sub-

mitters, the submitted prices are aligned according to a predefined mechanism. The average

consensus-implied spot from the at-the-money 6-month option, that is S̄ (100, 6), is used for

all other combinations of K and T . The submitted prices are restated in terms of S̄ (K,T ),

30Data provided by IHS MarkitTM - Nothing in this publication is sponsored, endorsed, sold or promoted
by IHS Markit or its affiliates. Neither IHS Markit nor its affiliates make any representations or warranties,
express or implied, to you or any other person regarding the advisability of investing in the financial products
described in this report or as to the results obtained from the use of the IHS Markit Data. Neither IHS
Markit nor any of its affiliates have any obligation or liability in connection with the operation, marketing,
trading or sale of any financial product described in this report or use of the IHS Markit Data. IHS Markit
and its affiliates shall not be liable (whether in negligence or otherwise) to any person for any error in the
IHS Markit Data and shall not be under any obligation to advise any person of any error therein.
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giving: p̂i ({c, p}, K, T ) = P i({c,p},K,T )/S̄(K,T ).

Given the submitted quantities, a Totem analyst calculates various implied quantities to

validate the individual submissions. Put-call parity for ATM options is used to retrieve the

relative forward, i.e.,

f i (K,T ) =
p̂i (c,K, T )− p̂i (p,K, T )

βi (T )
+ 1

The above inputs are then used in the Black-Scholes model,

p̂i (c,K, T ) = βi (T )
[
f i (K,T )N (d1,i)−KN (d2,i)

]

d1,i =
ln
(
f i

K

)
+
(

(σi)2

2

)
T a

σi
√
T a

,where T a =
T

365.25

d2,i = d1,i − σi
√
T a

to back-out σi in the above expression, which yields the implied volatility (IV) corresponding

to submitter i’s price submission for the given contract. We denote this IV by σi(K,T ). Here

N() is the cdf of the standard normal distribution.

When reviewing submissions, Totem analysts compare these IVs against other submitted

prices and market conditions. They take the following points into consideration:

• the number of contributors,

• market activity & news,

• market conventions,

• the distribution and spread of contributed data,

• and, in a “one way market,” they check if the concept of a mid-market price is clearly

understood.

In addition to these criteria, analysts also visually inspect the ATM implied volatility term

structure and the shape of the implied volatility curve for a given term, also referred to as

the skew or the smile. After the vetting process, the analyst proceeds to the aggregation of

the individual submissions into the consensus data.
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Submitters’ implied volatilities σi(K,T ) are aggregated into the consensus IV,

σ̄ (K,T ) =
1

n(K,T )

n(K,T )∑
i=1

σi (K,T ) .

Here n(K,T ) is the number of IVs used to calculate the consensus IV. Given more than

6 non-rejected IVs are available, the highest and lowest IV are excluded in the calculation

to obtain a robust consensus IV. The same process takes place for the submitted prices to

calculate a consensus price.

Submitters whose pricing information has been accepted by the Totem service receive the

consensus information within 5 hours of the submission deadline. The consensus data in-

clude the average, standard deviation, skewness, and kurtosis of the distribution of accepted

prices and implied volatilities. They also include the number of submitters to the consensus

data.

8.3 Demand-based option pricing

Here, we show how the assumed AR(1) process for the fundamental value of the option

(expressed in terms of the logarithm of its implied volatility), i.e.

θt = ρ θt−1 + σu ut with ut ∼ N(0, 1),

can be obtained within the framework of demand-based option pricing developed in Gârleanu

et al. (2009). The framework shows how demand pressures can influence option prices when

option dealers are risk averse and asset markets are not frictionless. We refer to the paper

for details.

The price of the asset that underlies the options contract follows a geometric Brownian

motion, i.e.

dSt = µSt dt+ σ St dWt.

In the absence of demand pressure, each option has a constant Black-Scholes implied volatil-

ity of σ, that is the volatility surface is flat in all periods.
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We assume that the only source of friction is the inability to hedge options continuously. For

this case, Gârleanu et al. (2009) show that the Black-Scholes IV for option i changes with a

shift in demand for option j according to

∂σit
∂djt

=
γ r V art ((∆S)2)

4

f iSS
νi

f jSS + o
(
∆2
t

)
where f i is the Black-Scholes (BS) price of option i, f iSS is option i’s BS gamma and νi is

option i’s BS vega, r is the risk-free rate, and γ is the coefficient of relative risk aversion of

the risk-averse dealers with CRRA utility. ∆t is the time interval between two re-hedging

opportunities, the only source of friction in this model.

As the price of the underlying, S, follows Brownian motion we have

∆S = St+∆t − St ≈ µSt ∆t + σ
√

∆t St ε,

where ε ∼ N(0, 1). It follows that

V art
(
(∆S)2

)
= V art

(
σ2 ∆t S

2
t ε

2 + 2µσ S2
t ∆

3/2
t ε

)
= 2σ4 S4

t ∆2
t + o

(
∆2
t

)
,

BS gamma of option i is

f iSS =
φ(d1)

σ St
√
τ
,

and BS vega of option i is

νi = St
√
τ φ(d1),

where

d1 =
log(S/K) + (r + 1

2
σ2)τ

σ
√
τ

.

Thus, using the above result from Gârleanu et al. (2009), the change in the IV of option i

induced by a marginal change in demand for this option is

∂σit
∂dit

=
1

2
γ r

(
σ∆t√
τ

)2
φ(d1)√
τ
St + o

(
∆2
t

)
.
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Here, dit is client demand for option i in units of options. We define the corresponding dollar

demand for option i as

d̂it = dt p
i
t = κi St dt,

where κi is a function of moneyness K/S, σ, and τ only. It follows that

∂σit

∂d̂it
≈ 1

2
γ r

(
σ∆t√
τ

)2
φ(d1)

κi
√
τ
.

Also note that
∂ log σit

∂d̂it
=
∂σit

∂d̂it

1

σit
,

which, for σit close to its long-run mean σi, implies that

∂ log σit

∂d̂it
≈ 1

2
γ r

(
σ∆t√
τ

)2
φ(d1)

κi σi
√
τ
≡ λi.

We assume that the impact of dollar demand for an option j 6= i on the IV of option i

is negligible. Let d̄i denote the mean of d̂it. Then for σit close to σi and d̂it close to d̄i we

approximately have

log σit = log σi + λi
(
d̂it − d̄i

)
=
(
log σi − λid̄i

)
+ λi d̂it.

Now suppose dollar demand for option i follows an AR1 process,

d̂it = (1− ρi)d̄i + ρi d̂it−1 + eit.

Substituting this process into the previous expression for log σit yields an AR1 process for

log IV that is driven by the demand shock eit,

log σit = (1− ρi) log σi + ρi log σit−1 + λi eit.
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Figure 7: Bid-Ask spread vs Totem’s submission range
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The figure above displays the cross-sectional range (the difference between the highest and lowest submitted
price) of the submissions to IHS Markit’s Totem service and the bid-ask spread on traded options from
OptionMetrics data. The series on display are for an option contract with time-to-expiration of 6 months
and moneyness 100. The bid-ask spread is given by the difference between the best closing bid price and best
closing ask price across all US option exchanges. On a given Totem valuation date, we match OptionMetrics
option contracts that are a close proxy to a time-to-expiration of 6 months and moneyness 100. In the
OptionMetrics database we search for contracts with a ± 10 days-to-maturity and a ±1 moneyness on
Totem’s valuation date. When multiple options match the criteria, an average of their bid-ask spread is
taken.
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